Built environment characteristics and driving speed in 30 km/h zones: a Dutch national analysis

Authors

DOI:

https://doi.org/10.55329/dlam1892

Keywords:

30 km/h zone, driving speed, road safety, Safety Performance Indicators, traffic calming

Abstract

Road authorities are systematically expanding 30 km/h zones to enhance safety. This requires understanding how built environment characteristics are associated with driving speeds, but only a few studies, typically based on small samples, focus on 30 km/h streets. Using a spatial error model, this study examines the relationship between built environment factors and 85th percentile speeds on 47,000 km of Dutch 30 km/h streets (N=159.000). Driving speed and traffic volume data were estimated using floating car data, while built environment characteristics were collected from public sources.

The results show that higher driving speeds are associated with greater traffic volumes, longer street lengths, closed pavement, separated bicycle tracks, visually marked bicycle lanes, and longer road sections. Features linked to lower driving speeds include curves, speed humps, raised intersections, exit constructions at zone entrances, narrower carriageways, roadside parking, nearby premises, and higher address densities.

Furthermore, the identified interaction effects show that measures like speed humps and raised intersections have greater impacts in high-speed environments (i.e. long and busy streets with closed pavement) but limited effects in low-speed settings. These findings emphasize the need to consider combinations of road design elements and their context-dependent effects to understand driving speed on 30 km/h streets. Out study provides valuable insights into the effectiveness of speed-reduction measures, offering guidance for interventions targeting streets with excessive speeds.

Downloads

Author Biographies

Paul Schepers, Ministry of Infrastructure and Water Management, the Netherlands

Paul Schepers is a senior road safety consultant and researcher at Rijkswaterstaat (the Dutch national road authority) specialised in road safety of vulnerable road users and the use of and data for Safety Performance Indicators for road safety policy. He earned his PhD in road safety from Delft University of Technology in 2013 for the thesis ‘A safer road environment for cyclists’.

CRediT contribution: Conceptualization, Formal analysis, Investigation, Methodology, Writing—original draft, Writing—review & editing.

Werner van Loo, National Road Traffic Data Portal, the Netherlands

Werner van Loo is a senior traffic consultant and data scientist at the National Road Traffic Data Portal. He is specialised in Floating Car Data, Geographic Information Systems and road safety data. He also has over a decade of experience as a traffic engineer for municipalities.

CRediT contribution: Conceptualization, Data curation, Validation.

Wouter Mieras, Sweco, the Netherlands

Wouter Mieras is a mathematician and data scientist. As a senior mobility consultant at Sweco, he conducts evaluation studies in areas such as traffic safety and works with traffic models. He is specialized in devising methodologies, conducting sharp and applicable analyses, performing complex and large-scale data manipulations, and visualizing information.

CRediT contribution: Conceptualization, Methodology.

Hans Drolenga, Sweco, the Netherlands

Hans Drolenga works at Sweco as a project manager and consultant on research and evaluation projects in the field of road safety. His passion lies in extracting valuable information from large and complex datasets in the mobility field and using these insights to provide clear and actionable recommendations. With nearly 20 years of experience, he is well-versed in conducting research and reporting at a scientific level.

CRediT contribution: Conceptualization.

Dick de Waard, University of Groningen, the Netherlands

Dick de Waard is a professor in Traffic Psychology and the retention of Mobility at the University of Groningen. He is specialised in human behaviour in surface transportation and aviation. He is experienced in the study of dual task performance, effects of Advanced Driving Assistance Systems, the detection of impaired driving, and human error.

CRediT contribution: Conceptualization.

Marco Helbich, Utrecht University, the Netherlands

Marco Helbich is an associate professor in the Department of Human Geography and Spatial Planning, Utrecht University. His research deals with health geography and how the built and natural environments affect human behaviour. His research interests focus on computational techniques and spatiotemporal analytics to address human-environment relations in cities.

CRediT contribution: Methodology, Writing—review & editing.

References

Aarts, L., & Van Schagen, I. (2006). Driving speed and the risk of road crashes: A review. Accident Analysis and Prevention, 38(2), 215–224. DOI: https://doi.org/10.1016/j.aap.2005.07.004

Andriesse, R. (2021). Het nieuwe 30. Eindrapport data-onderzoek. DTV Consultants en Goudappel.

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic. DOI: https://doi.org/10.1007/978-94-015-7799-1

Anselin, L., & Berra, A. K. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In M. Dekker (Ed.), Handbook of Applied Economic Statistics (pp. 237–289). Dekker.

Anselin, L., Li, X., & Koschinsky, J. (2022). GeoDa, from the desktop to an ecosystem for exploring spatial data. Geographical Analysis, 54(3), 439–466. DOI: https://doi.org/10.1111/gean.12311

Beek, M. (2022). Effects of speed limit reduction on safety, job accessibility and equity: Case study: Amsterdam, speed limit reduction of 50km/h to 30km/h. University of Twente.

Birth, S., Pflaumbaum, M., Potzel, D., & Sieber, G. (2009). Human Factors Guideline for Safer Road Infrastructure. World Road Association.

Brink, M., Mathieu, S., & Rüttener, S. (2022). Lowering urban speed limits to 30 km/h reduces noise annoyance and shifts exposure–response relationships: Evidence from a field study in Zurich. Environment International, 170, 107651. DOI: https://doi.org/10.1016/j.envint.2022.107651

CBS. (2024a). Bestand bodemgebruik. Centraal Bureau voor de Statistiek.

CBS. (2024b). Wijk- en buurtkaart 2023 version 1. Centraal Bureau voor de Statistiek.

Christiansen, L. B., Cerin, E., Badland, H., Kerr, J., Davey, R., Troelsen, J., van Dyck, D., Mitáš, J., Schofield, G., Sugiyama, T., Salvo, D., Sarmiento, O. L., Reis, R., Adams, M., Frank, L., & Sallis, J. F. (2016). International comparisons of the associations between objective measures of the built environment and transport-related walking and cycling: IPEN adult study. Journal of Transport and Health, 3(4), 467–478. DOI: https://doi.org/10.1016/j.jth.2016.02.010

Chuna, W. (2017). Research on Driving Speed Change When Passing Intersections. IEEE Xplore, 211–214. DOI: https://doi.org/10.1109/ICMTMA.2017.0057

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates.

CROW. (2013). Handboek Wegontwerp 2013: Gebiedsontsluitingswegen; Publicatie 330. CROW. DOI: https://doi.org/10.32473/edis-ng039-2013

CROW. (2014). Richtlijn drempels, plateaus en uitritten. CROW.

CROW. (2021). ASVV 2021 - Aanbevelingen voor verkeersvoorzieningen binnen de bebouwde kom. CROW.

CROW. (2023). Handreiking voorlopige inrichtingskenmerken GOW30. CROW.

Daganzo, C. F. (1997). Fundamentals of Transportation and Traffic Operations. Pergamon. DOI: https://doi.org/10.1108/9780585475301

De Waard, D., Steyvers, F. J. J. M., & Brookhuis, K. A. (2004). How much visual road information is needed to drive safely and comfortably? Safety Science, 42(7), 639–655. DOI: https://doi.org/10.1016/j.ssci.2003.09.002

Dinh, D. D., & Kubota, H. (2013). Profile-speed data-based models to estimate operating speeds for urban residential streets with a 30 km/h speed limit. IATSS Research, 36(2), 115–122. DOI: https://doi.org/10.1016/j.iatssr.2012.06.001

Dissel, T. (2024). Planning too fast to slow down traffic? The planning culture of Amsterdam as a 30 km/h city [Utrecht University].

Duivenvoorden, K., Hogema, J., Hagenzieker, M., & Wegman, F. (2015). The Effects of Cyclists Present at Rural Intersections on Speed Behavior and Workload of Car Drivers: A Driving Simulator Study. Traffic Injury Prevention, 16(3), 254–259. DOI: https://doi.org/10.1080/15389588.2014.937484

Edquist, J., Rudin-Brown, C. M., & Lenné, M. G. (2012). The effects of on-street parking and road environment visual complexity on travel speed and reaction time. Accident Analysis and Prevention, 45, 759–765. DOI: https://doi.org/10.1016/j.aap.2011.10.001

Elvik, R. (2001). Area-wide urban traffic calming schemes: a meta-analysis of safety effects. Accident Analysis and Prevention, 33(3), 327–336. DOI: https://doi.org/10.1016/S0001-4575(00)00046-4

Elvik, R. (2011). Assessing causality in multivariate accident models. Accident Analysis and Prevention, 43(1), 253–264. DOI: https://doi.org/10.1016/j.aap.2010.08.018

Ewing, R., & Dumbaugh, E. (2009). The built environment and traffic safety a review of empirical evidence. Journal of Planning Literature, 23(4), 347–367. DOI: https://doi.org/10.1177/0885412209335553

Fietsersbond. (2024). Fietsrouteplanner. Fietsersbond.

Fildes, B. N., & Triggs, T. J. (1985). The on effect of changes in curve geometry magnitude estimates of road-like perspective curvature. Perception & Psychophysics, 37, 218–224. DOI: https://doi.org/10.3758/BF03207567

Fitzpatrick, K., Shamburger, C. B., Krammes, R. A., & Fambro, D. B. (1997). Operating speed on suburban arterial curves. Transportation Research Record, 1579(1), 89–96. DOI: https://doi.org/10.3141/1579-11

Foelske, L., & Van Riper, C. J. (2020). Assessing spatial preference heterogeneity in a mixed-use landscape. Applied Geography, 125, 102355. DOI: https://doi.org/10.1016/j.apgeog.2020.102355

Fuller, R. (2005). Towards a general theory of driver behaviour. Accident Analysis and Prevention, 37(3), 461–472. DOI: https://doi.org/10.1016/j.aap.2004.11.003

Fuller, R. (2007). Driver training and assessment: implications of the task-difficulty homeostasis model. In L. Dorn (Ed.), Driver behaviour and training (pp. 337–348). Ashgate.

Gaonkar, M. P., Liwo, A. N., & Beasley, T. M. (2023). Computing Generalized Collinearity Diagnostics for Categorical Variables Using Multivariate Regression. General Linear Model Journal, 47(2), 16–28. DOI: https://doi.org/10.31523/glmj.047002.002

Gedik, A., Bilgin, E., Lav, A. H., & Artan, R. (2019). An investigation into the effect of parabolic speed hump profiles on ride comfort and driving safety under variable vehicle speeds: A campus experience. Sustainable Cities and Society, 45, 413–421. DOI: https://doi.org/10.1016/j.scs.2018.11.040

GeoDa. (2024). GeoDa: An introduction to spatial data science.

Gibson, J. J. (1950). The perception of the visual world. Houghton Mifflin. DOI: https://doi.org/10.2307/1418003

Gitelman, V., Carmel, R., Pesahov, F., & Chen, S. (2017). Changes in road-user behaviors following the installation of raised pedestrian crosswalks combined with preceding speed humps, on urban arterials. Transportation Research Part F, 46, 356–372. DOI: https://doi.org/10.1016/j.trf.2016.07.007

Hastig. (2024). Verkeersintensiteiten Nederland 2023. Hastig.

Hussain, Q., Feng, H., Grzebieta, R., Brijs, T., & Olivier, J. (2019). The relationship between impact speed and the probability of pedestrian fatality during a vehicle-pedestrian crash: A systematic review and meta-analysis. Accident Analysis and Prevention, 129, 241–249. DOI: https://doi.org/10.1016/j.aap.2019.05.033

Jansen, R., Van der Kint, S., & Schermers, G. (2018). Geloofwaardigheid van snelheidslimieten; Evaluatie van de geloofwaardigheidsscore op 50km/uur-wegen in Amsterdam. SWOV.

Kadaster. (2024a). BAG GeoPackage.

Kadaster. (2024b). PDOK Dataset: Basisregistratie Grootschalige Topografie (BGT) [Dataset]. Kadaster.

Kallberg, V.-P. (1993). Reflector posts--signs of danger? Transportation Research Record, 1403, 57–66.

Kang, X., Namgung, M., Fujiwara, A., Kim, W., & Wang, W. (2019). Analysis of Vehicle Maneuverability and Driving Characteristics on a Curved Road Condition. KSCE Journal of Civil Engineering, 23(1), 420–432. DOI: https://doi.org/10.1007/s12205-018-1803-y

Kärmeniemi, M., Lankila, T., Ikäheimo, T., Puhakka, S., Niemelä, M., Jämsä, T., Koivumaa-Honkanen, H., & Korpelainen, R. (2019). Residential relocation trajectories and neighborhood density, mixed land use and access networks as predictors of walking and bicycling in the Northern Finland Birth Cohort 1966. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 88. DOI: https://doi.org/10.1186/s12966-019-0856-8

Kijk in de Vegte, N. (2022). V85 op 30 km/u wegen schatten met FCD. Nationale Dataportaal Wegverkeersgegevens.

Kim, J., & Elefteriadou, L. (2010). Estimation of capacity of two-lane two-way highways using simulation model. Journal of Transportation Engineering, 136(1), 61–66. DOI: https://doi.org/10.1061/(ASCE)0733-947X(2010)136:1(61)

Koornstra, M. J., Mathijssen, M. P. M., Mulder, J. A., Roszbach, R., & Wegman, F. C. M. (1992). Naar een Duurzaam Veilig Wegverkeer (Towards Sustainably Safe Road Traffic). Institute for Road Safety Research.

Kovaceva, J., Nero, G., Bärgman, J., & Dozza, M. (2019). Drivers overtaking cyclists in the real-world: Evidence from a naturalistic driving study. Safety Science, 119, 199–206. DOI: https://doi.org/10.1016/j.ssci.2018.08.022

Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models. McGraw-Hill/Irwin.

Lewis-Evans, B., & Charlton, S. G. (2006). Explicit and implicit processes in behavioural adaptation to road width. Accident Analysis and Prevention, 38(3), 610–617. DOI: https://doi.org/10.1016/j.aap.2005.12.005

Liao, Y., Li, G., Li, S. E., Cheng, B., & Green, P. (2018). Understanding Driver Response Patterns to Mental Workload Increase in Typical Driving Scenarios. IEEE Access, 6, 35890–35900. DOI: https://doi.org/10.1109/ACCESS.2018.2851309

Lubbe, N., Wu, Y., & Jeppsson, H. (2022). Safe speeds: fatality and injury risks of pedestrians, cyclists, motorcyclists, and car drivers impacting the front of another passenger car as a function of closing speed and age. Traffic Safety Research, 2, 000006. DOI: https://doi.org/10.55329/vfma7555

Luo, M., Li, H., Pan, X., Fei, T., Dai, S., Qiu, G., Zou, Y., Vos, H., Luo, J., & Jia, P. (2021). Neighbourhood speed limit and childhood obesity. Obesity Reviews, 22, e13052. DOI: https://doi.org/10.1111/obr.13052

Mieras, W., & Drolenga, H. (2023). Snelheidsremmers in het NWB. Sweco. Sweco Nederland.

NDW. (2023). Gebruikersinformatie Wegkenmerkendatabase (WKD); versie 1.5. Nationaal Dataportaal Wegverkeersgegevens.

NDW. (2024). Verkeersintensiteiten voor verkeersveiligheidsanalyses. Nationaal Dataportaal Wegverkeersgegevens.

Nie, J., Li, G., & Yang, J. (2015). A Study of Fatality Risk and Head Dynamic Response of Cyclist and Pedestrian Based on Passenger Car Accident Data Analysis and Simulations. Traffic Injury Prevention, 16(1), 76–83. DOI: https://doi.org/10.1080/15389588.2014.881477

O’Sullivan, D., & Unwin, D. (2014). Geographic information analysis. John Wiley & Sons.

Paidi, V., Håkansson, J., Fleyeh, H., & Nyberg, R. G. (2022). CO2 Emissions Induced by Vehicles Cruising for Empty Parking Spaces in an Open Parking Lot. Sustainability, 14(7). DOI: https://doi.org/10.3390/su14073742

Pretto, P., & Chatziastros, A. (2006). Changes in optic flow and scene contrast affect the driving speed.

R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Rahim, S. U. A., & Daniel, B. D. (2023). The effect of street design on speed of vehicles along urban residential streets in Johor. IOP Conference Series: Earth and Environmental Science, 1205(1), 012058. DOI: https://doi.org/10.1088/1755-1315/1205/1/012058

Rijkswaterstaat. (2023). Detectie van wegmarkeringen voor Nationaal Wegenbestand. RWS Datalab.

Said, D., Hassan, Y., & Abd El Halim, A. (2009). Comfort thresholds for horizontal curve design. Canadian Journal of Civil Engineering, 36(9), 1391–1402. DOI: https://doi.org/10.1139/L09-075

Schagen, I. N. L. G. v., Wegman, F. C. M., & Roszbach, R. (2004). Veilige en geloofwaardige snelheidslimieten; Een strategische verkenning. SWOV.

Schneider, R. J., & Pande, S. (2012). How Common is Pedestrian Travel to, from, and within Shopping Districts? Transportation Research Record, 2299(1), 11–21. DOI: https://doi.org/10.3141/2299-02

Schoon, C. C. (2000). Verkeersveiligheidsanalyse van het Concept-NVVP; Deel 1: Effectiviteit van Maatregelen (Road Safety Analysis of the Concept NVVP; Part 1: Effectiveness of Measures). Institute for Road Safety Research.

Sołowczuk, A. B., & Kacprzak, D. (2021). Identification of the Determinants of the Effectiveness of On-Road Chicanes in the Village Transition Zones Subject to a 50 km/h speed limit. Energies, 14(13), 4002. DOI: https://doi.org/10.3390/en14134002

Steyvers, F. J., & De Waard, D. (2000). Road-edge delineation in rural areas: effects on driving behaviour. Ergonomics, 43(2), 223–238. DOI: https://doi.org/10.1080/001401300184576

Theeuwes, J., & Godthelp, H. (1995). Self-explaining roads. Safety Science, 19(2–3), 217–225. DOI: https://doi.org/10.1016/0925-7535(94)00022-U

Theeuwes, J., Snell, J., Koning, T., & Bucker, B. (2024). Self-Explaining Roads: Effects of road design on speed choice. Transportation Research Part F, 102, 335–361. DOI: https://doi.org/10.1016/j.trf.2024.03.007

Tingvall, C., & Haworth, N. (1999). Vision Zero: an ethical approach to safety and mobility.

Valdés-Souto, F., & Naranjo-Albarrán, L. (2021). Improving the software estimation models based on functional size through validation of the assumptions behind the linear regression and the use of the confidence intervals when the reference database presents a wedge-shape form. Programming and Computer Software, 47(8), 673–693. DOI: https://doi.org/10.1134/S0361768821080259

Van der Kint, S. T., Schermers, G., Gebhard, S. E., & Hermens, F. (2022). Veilige Snelheden, Geloofwaardige Snelheidslimieten (VSGS); Hoe valide is de GS-bepaling met de VSGS-methode? SWOV.

Van Driel, C. J. G., Davidse, R. J., & Van Maarseveen, M. F. A. M. (2004). The effects of an edgeline on speed and lateral position: a meta-analysis. Accident Analysis and Prevention, 36(4), 671–682. DOI: https://doi.org/10.1016/S0001-4575(03)00090-3

Van Minnen, J. (1999). Geschikte grootte van verblijfsgebieden; Een theoretische studie met toetsing aan praktijkervaringen (R-99-25). SWOV.

Van Rij, M. (2024). Capaciteitswaarden Infrastructuur Autosnelwegen. Rijkswaterstaat Water, Verkeer en Leefomgeving.

Van Wee, B. (2009). Verkeer en Transport (Traffic and Transport). In B. Van Wee & J. A. Annema (Eds.), Verkeer en Vervoer in Hoofdlijnen (Outlining Traffic and Transport). Coutinho.

Vos, J., Farah, H., & Hagenzieker, M. (2021). Speed behaviour upon approaching freeway curves. Accident Analysis and Prevention, 159, 106276. DOI: https://doi.org/10.1016/j.aap.2021.106276

Wang, J., Dixon, K. K., Li, H., & Hunter, M. (2006). Operating-speed model for low-speed urban tangent streets based on in-vehicle global positioning system data. Transportation Research Record, 1961(1), 24–33. DOI: https://doi.org/10.1177/0361198106196100104

Wegman, F. C. M., Aarts, L. T., & Bax, C. (2008). Advancing sustainable safety: national road safety outlook for the Netherlands for 2005–2020. Safety Science, 46(2), 323–343. DOI: https://doi.org/10.1016/j.ssci.2007.06.013

Weijermars, W., & Wegman, F. C. M. (2011). Ten Years of Sustainable Safety in the Netherlands. Transportation Research Record, 2213, 1–8. DOI: https://doi.org/10.3141/2213-01

Wilde, G. J. S. (1982). The theory of risk homeostasis: implications for safety and health. Risk Analysis, 2(4), 209–225. DOI: https://doi.org/10.1111/j.1539-6924.1982.tb01384.x

Yannis, G., & Michelaraki, E. (2024). Review of City-Wide 30 km/h Speed Limit Benefits in Europe. Sustainability, 16(11), 4382. DOI: https://doi.org/10.3390/su16114382

Zhao, X., Li, J., Ma, J., & Rong, J. (2016). Evaluation of the effects of school zone signs and markings on speed reduction: a driving simulator study. SpringerPlus, 5, 1–14. DOI: https://doi.org/10.1186/s40064-016-2396-x

Zhu, Y., Ye, X., Chen, J., Yan, X., & Wang, T. (2020). Impact of cruising for parking on travel time of traffic flow. Sustainability, 12(8), 3079. DOI: https://doi.org/10.3390/su12083079

Published

2025-03-25

How to Cite

Schepers, P., van Loo, W., Mieras, W., Drolenga, H., de Waard, D., & Helbich, M. (2025). Built environment characteristics and driving speed in 30 km/h zones: a Dutch national analysis. Traffic Safety Research, 9, e000091. https://doi.org/10.55329/dlam1892