Determinants of crash numbers and constellations at turbo roundabouts in Germany

Authors

DOI:

https://doi.org/10.55329/mpaf3385

Keywords:

crash constellation, crash prediction model, crash type, physical dividers, turbo roundabout

Abstract

Turbo roundabouts are a relatively new design. Thus far, research on their safety has focused on comparisons with other types of intersection and the effects of physical lane dividers. This study investigates crash patterns at German turbo roundabouts, based on a largely complete sample of such roundabouts and detailed data on infrastructure characteristics, traffic volumes and crashes. We calculate the crash rates for turbo roundabouts as a whole, as well as for their individual elements, including entries and exits, and the circulatory roadway. In addition, crash constellations are analysed and crash prediction models are computed, for all crashes and for the two most relevant crash constellations right-of-way and rear-end crashes. The results confirm earlier research findings that turbo roundabouts effectively combine high capacity with high safety levels. The results add new insights, thanks to the more detailed analysis. Entries and right-of-way crashes are most relevant, followed by rear-end crashes which mainly occur at the circulatory roadway. Crash constellations differ significantly between the different elements of the roundabouts, traffic volumes increase crash numbers for all designs and elements. We find no significant effects of the different types of marked lane dividers in our sample, this suggests that drivers do not respect solid lines and that physical dividers are potentially needed to prevent drivers from changing lanes in the circulatory roadway. The detailed analysis of crash patterns in this study enables specific recommendations to be made for improving safety at turbo roundabouts further and exploiting their potential more effectively.

Downloads

Download data is not yet available.

Author Biographies

Armin Kollascheck, Dresden University of Technology, Germany

Dipl.-Ing. Armin Kollascheck is a research assistant at the Chair of Mobility System Planning at TUD Dresden University of Technology. He studied traffic engineering transport planning and worked as student assistant at Hoffmann-Leichter Engineering Consultancy mbH. His research interests include road traffic safety and automated methods to measure and analyse road traffic and mobility.

CRediT contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing—original draft, Writing—review & editing.

Martin Bärwolff, The Federal Autobahn GmbH, Germany | Dresden University of Technology, Germany

Dipl.-Ing. Martin Bärwolff was a research associate at the Chair of Integrated Transport Planning and Traffic Engineering at TUD Dresden University of Technology, and now works at the Autobahn GmbH of the federal government. After studying traffic engineering in Dresden, he is now a PhD student, and co-founded platomo, a start-up specialised in the development of hardware, software and automated methods for data-driven analysis and modelling of traffic and mobility. His research interests focus on traffic safety in general as well as traffic behaviour of vulnerable road users and automated methods to measure and analyse traffic and mobility.

CRediT contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Writing—original draft.

Julian Schmitz, Ruhr University Bochum, Germany

Dr.-Ing. Julian Schmitz is research assistant at the Institute for Traffic Engineering and Management at Ruhr-University Bochum. He has worked on several research projects on traffic flow and safety at different types of urban intersections. He recently completed his doctorate on the capacity of signalized intersections.

CRediT contribution: Conceptualization, Data curation, Formal analysis, Visualization, Writing—original draft.

Justin Geistefeldt, Ruhr University Bochum, Germany

Prof. Dr.-Ing. Justin Geistefeldt is professor and head of the Institute for Traffic Engineering and Management at Ruhr-University Bochum. His major research interests include highway capacity and quality of service analysis, traffic flow theory, macroscopic and microscopic traffic simulation, road safety analysis, and traffic management.

CRediT contribution: Conceptualization, Supervision, Writing—original draft, Writing—review & editing.

Sebastian Hanteschel, Dresden University of Technology, Germany

Dr.-Ing. Sebastian Hantschel is a postdoc researcher at the Chair of Mobility System Planning at TUD Dresden University of Technology. He finished his PhD in 2022 that analysed determinants of bicyclists' behaviour and safety in mixed traffic situations on major roads in urban areas. His research interests focus on traffic safety and safety-related behaviour of vulnerable road users.

CRediT contribution: Supervision, Writing—review & editing.

Regine Gerike, Dresden University of Technology, Germany

Prof. Dr.-Ing. Regine Gerike is head of the Chair of Mobility System Planning at TUD Dresden University of Technology. Before joining TUD, she chaired the Institute for Transport Studies at the University of Natural Resources and Life Sciences (BOKU) in Vienna, Austria. From 2008 to 2012 she was assistant professor at Technical University of Munich, head of the Research Centre Mobility and Transport and of the PhD-program “mobil.LAB Sustainable Mobility in the Metropolitan Region of Munich”. Her research interests include transport planning and traffic safety with a focus on vulnerable road users.

CRediT contribution: Conceptualization, Supervision, Writing—original draft, Writing—review & editing.

References

Al-Marafi, M. N., Somasundaraswaran, K., & Ayers, R. (2020). Developing crash modification factors for roundabouts using a cross-sectional method. Journal of Traffic and Transportation Engineering (English Edition), 7(3), 362–374. DOI: https://doi.org/10.1016/j.jtte.2018.10.012

Arun, A., Haque, Md. M., Washington, S., Sayed, T., & Mannering, F. (2021). A systematic review of traffic conflict-based safety measures with a focus on application context. Analytic Methods in Accident Research, 32, 100185. DOI: https://doi.org/10.1016/j.amar.2021.100185

de Baan, D. (2009). Turborotondes. Royal Haskoning.

de Baan, D. (2021). Aantal ’gespotte’ turborotondes.

Bondzio, L., Scheit, M., & Weinert, R. (2012). Verkehrssicherheit innerörtlicher Kreisverkehre (Vol. 05). Brilon Bondzio Weiser and Unfallforschung der Versicherer; Gesamtverband der Deutschen Versicherungswirtschaft e.V. Unfallforschung der Versicherer.

Brilon, W., Drews, O., & Stuwe, B. (1993). Sicherheit und Leistungsfähigkeit von Kreisverkehrsplätzen: Schlußbericht. Univ. Lehrstuhl für Verkehrswesen.

Brilon, W., & Geppert, A. (2014). Verkehrsablauf und Verkehrssicherheit an zweistreifig befahrbaren Kreisverkehren und Turbokreisverkehren: Vol. H. 1112. Fachverl. NW in der Carl-Schünemann-Verl.-GmbH.

Brilon, W., & Harding, J. (2008). Turbo-Kreisverkehr in Baden-Baden - Teil 2: Verkehrs- und sicherheitstechnische Untersuchung. Straße und Autobahn, 2008 59-5(59).

Bulla Cruz, L. A., Lyons, L., & Darghan, E. (2021). Complete-Linkage Clustering Analysis of Surrogate Measures for Road Safety Assessment in Roundabouts. Revista Colombiana de Estadística. DOI: https://doi.org/10.15446/rce.v44n1.81937

BW, V. (2015). Straßenverkehrszählung 2015 baden-württemberg.

Chodur, J., & Bąk, R. (2016). Study of driver behaviour at turbo-roundabouts. Archives of Transport, 38(2), 17–28. DOI: https://doi.org/10.5604/08669546.1218790

Elvik, R. (1995). Meta-analysis of evaluations of public lighting as accident countermeasure. Transportation Research Record, 1485, 112–123.

FGSV (Ed.). (2015). Arbeitspapier Turbokreisverkehre. Forschungsgesellschaft für Straßen- und Verkehrswesen.

Fortuijn, L. G. H. (2009). Turbo Roundabouts: Design Principles and Safety Performance. Transportation Research Record: Journal of the Transportation Research Board, 2096, 16–24. DOI: https://doi.org/10.3141/2096-03

Hansen, I. A., & Fortuijn, L. G. (2006). Steigerung der Leistungsfaehigkeit und Sicherheit von mehrspurigen Kreisverkehrsplaetzen durch Spiralform. Straßenverkehrstechnik, 50(1).

Hantschel, S., & Maier, R. (2013). Turbokreisverkehr Stadtring/Nordring in Cottbus - wissenschaftliche Begleitung der Inbetriebnahme: Schlussbericht. Technischen Universität Dresden.

Hydén, C., & Várhelyi, A. (2000). The effects on safety, time consumption and environment of large scale use of roundabouts in an urban area: A case study. Accident Analysis & Prevention, 32(1), 11–23. DOI: https://doi.org/10.1016/S0001-4575(99)00044-5

Kieć, M., Ambros, J., Bąk, R., & Gogolín, O. (2019). Evaluation of safety effect of turbo-roundabout lane dividers using floating car data and video observation. Accident; Analysis and Prevention, 125, 302–310. DOI: https://doi.org/10.1016/j.aap.2018.05.009

Kim, S., & Choi, J. (2013). Safety analysis of roundabout designs based on geometric and speed characteristics. KSCE Journal of Civil Engineering, 17(6), 1446–1454. DOI: https://doi.org/10.1007/s12205-013-0177-4

Kocianova, A. (2016). Capacity Limits of basic Turbo-roundabout. Communications - Scientific Letters of the University of Zilina. DOI: https://doi.org/10.26552/com.C.2016.4.90-98

Křivda, V., Petrů, J., Macha, D., Plocova, K., & Fibich, D. (2020). An Analysis of Traffic Conflicts as a Tool for Sustainable Road Transport. Sustainability. DOI: https://doi.org/10.3390/su12177198

Leonardi, S., & Distefano, N. (2023). Turbo-Roundabouts as an Instrument for Improving the Efficiency and Safety in Urban Area: An Italian Case Study. Sustainability, 15(4), 3223. DOI: https://doi.org/10.3390/su15043223

Macioszek, E. (2015). The road safety at turbo roundabouts in Poland. Archives of Transport, 33(1), 57–67. DOI: https://doi.org/10.5604/08669546.1160927

Macioszek, E., & Kurek, A. (2020). Roundabout users subjective safety - case study from Upper Silesian and Masovian Voivodeships (Poland). Transactions on Transport Sciences, 11(2), 39–50. DOI: https://doi.org/10.5507/tots.2020.009

Mandavilli, S., McCartt, A. T., & Retting, R. A. (2009). Crash patterns and potential engineering countermeasures at maryland roundabouts. Traffic Injury Prevention, 10(1), 44–50. DOI: https://doi.org/10.1080/15389580802485938

Novák, J., Ambros, J., & Frič, J. (2018). How Roundabout Entry Design Parameters Influence Safety. Transportation Research Record: Journal of the Transportation Research Board, 2672(34), 73–84. DOI: https://doi.org/10.1177/0361198118776159

NRW, M. (2015). SVZ 2015 NW.

Porter, R., Gooch, J., Peach, K., Chestnutt, C., Moore, B., Broeren, P., & Tigelaar, J. (2019). Advancing Turbo Roundabouts in the United States: Synthesis Report.

Schmotz, M., Schröter, B., Schemmel, A., Lippold, C., & Schulze, C. (2020). Kreisverkehren an landstraßen - auswirkungen der erkennbarkeit und der zufahrtsgestaltung auf die verkehrssicherheit. TUD University of Technology Dresden.

Schüller, H. (2009). Modelle zur Beschreibung des Geschwindigkeitsverhaltens auf Stadtstraßen und dessen Auswirkungen auf die Verkehrssicherheit auf Grundlage der Straßengestaltung: Dissertationsschrift [PhD thesis, TUD University of Technology Dresden].

Shetty, V., Sauciur, M., & Pande, A. (2025). Investigating the conversion of a signalized intersection to a turbo roundabout (Nos. 25–02). Mineta Transportation Institute, College of Business, San José State University. DOI: https://doi.org/10.31979/mti.2025.2233

Skvain, V., Petru, J., & Krivda, V. (2017). Turbo – Roundabouts and their Basic Evaluation at Realized Constructions in Czech Republic. Procedia Engineering, 190, 283–290. DOI: https://doi.org/10.1016/j.proeng.2017.05.339

Spacek, P. (2004). Basis of the swiss design standard for roundabouts. Transportation Research Record, 1881(1), 27–35. DOI: https://doi.org/10.3141/1881-04

Spahn, V., & Bäumler, G. (2007). Sicherheit von Kreisverkehrsplätzen und Lichtzeichenanlagen in Bayern / Traffic safety of roundabouts and intersections equipped with traffic lights. Straßenverkehrstechnik, 51.

Vasconcelos, A., Silva, A., & Seco, Á. (2013, January). Safety analysis of turbo-roundabouts using the SSAM technique. CITTA 6th Annual Conference on Planning Research.

Vieten, M., Dohmen, R., Dürhager, U., & Legge, K. (Eds.). (2010). Quantifizierung der Sicherheitswirkungen verschiedener Bau-, Gestaltungs- und Betriebsformen auf Landstraßen: Bericht zum Forschungsprojekt FE 82.311/2006 (Vol. 201). Wirtschaftsverlag NW Verl. für neue Wiss.

Vos, C. (2016). Analyse verkeersveiligheid turborotondes: Eindrapport [Master’s thesis, Hogeschool Windesheim; Hogeschool Windesheim].

Published

2025-11-07

How to Cite

Kollascheck, A., Bärwolff, M., Schmitz, J., Geistefeldt, J., Hanteschel, S., & Gerike, R. (2025). Determinants of crash numbers and constellations at turbo roundabouts in Germany. Traffic Safety Research, 9, e000113. https://doi.org/10.55329/mpaf3385