Extreme value analysis for safety benefit estimation of adaptive cruise control (ACC)
DOI:
https://doi.org/10.55329/byml9675Keywords:
automation, car-following, safety benchmark, safety impactAbstract
As new automated features enter the automotive market, we need methods to assess their safety in a rapid, proactive, and iterative way. The traditional way of relying on crash statistics does not meet these needs. An alternative is to use extrapolation techniques designed to deal with rare events, such as extreme value theory (EVT). In this paper, we applied EVT to estimate the risk of collision with and without adaptive cruise control (ACC) during steady-state car following. We defined a Bayesian regression model to estimate the parameters of the Weibull distribution for block maxima (BM) of the brake threat number (BTN). We used a small, open-access dataset collected during a platooning experiment on a test track, with and without ACC. We found that it is extremely unlikely that the use of ACC will result in a rear-end crash under normal car-following circumstances, a finding consistent with the general expectation that ACC is safer than manual driving. However, we found that the relative risk of ACC was actually higher than the human control baseline. The reason is that the baseline represents a cautious driving style which may not be typical of the driving style in real traffic. Nonetheless, EVT can measure the expected safety benefit of a vehicle system even without a large dataset. The BTN was an appropriate safety metric to compare automated and manual driving modes, as it accounts for specific brake behavior and performance.
Downloads
References
Anesiadou, A., Makridis, M., Ciuffo, B., & Mattas, K. (2020). Open ACC database.
Åsljung, D., Nilsson, J., & Fredriksson, J. (2016). Comparing collision threat measures for verification of autonomous vehicles using extreme value theory. IFAC-PapersOnLine, 49(15), 57–62. DOI: https://doi.org/10.1016/j.ifacol.2016.07.709
Åsljung, D., Nilsson, J., & Fredriksson, J. (2017). Using extreme value theory for vehicle level safety validation and implications for autonomous vehicles. IEEE Transactions on Intelligent Vehicles, 2(4), 288–297. DOI: https://doi.org/10.1109/TIV.2017.2768219
Bärgman, J., Lisovskaja, V., Victor, T., Flannagan, C., & Dozza, M. (2015). How does glance behavior influence crash and injury risk? A ’what-if’ counterfactual simulation using crashes and near-crashes from SHRP2. Transportation Research Part F: Traffic Psychology and Behaviour, 35, 152–169. DOI: https://doi.org/10.1016/j.trf.2015.10.011
Blumenthal, M. S., Fraade-Blanar, L., Best, R., & Irwin, J. L. (2020). Safe enough: Approaches to assessing acceptable safety for automated vehicles. RAND Corporation. DOI: https://doi.org/10.7249/RRA569-1
Brännström, M., Sjöberg, J., & Coelingh, E. (2008). A situation and threat assessment algorithm for a rear-end collision avoidance system. 102–107. DOI: https://doi.org/10.1109/IVS.2008.4621250
Bürkner, P. (2016). Brms: An R package for Bayesian multilevel models using stan. Journal of Statistical Software, 80(1), 1–28. DOI: https://doi.org/10.18637/jss.v080.i01
Bürkner, P. (2021). Estimating distributional models with brms.
Bürkner, P. (2022, September 19). Parameterization of response distributions in brms.
Chandran, T., Jan, H., Morando, A., Yuan, Y., Farah, H., Kreußlein, M., Fiorentino, A., & Birgelen, T. M. van. (2023). Assessment of safety and related societal benefits (Deliverable No. D4.1). H2020 Project MEDIATOR.
Coles, S. (2001). An introduction to statistical modeling of extreme values (Vol. 208). Springer. DOI: https://doi.org/10.1007/978-1-4471-3675-0
Coughlin, J. F., Reimer, B., & Mehler, B. (2011). Monitoring, managing, and motivating driver safety and well-being. IEEE Pervasive Computing, 10(3), 14–21. DOI: https://doi.org/10.1109/MPRV.2011.54
Dingus, T. A., Klauer, S. G., Neale, V. L., Petersen, A., Lee, S. E., Sudweeks, J. D., Perez, M. A., Hankey, J., Ramsey, D. J., & Gupta, S. (2006). The 100-car naturalistic driving study, phase II-results of the 100-car field experiment. Virginia Tech Transportation Institute. DOI: https://doi.org/10.1037/e624282011-001
Dobberstein, J., Schmidt, D., Östling, M., Lindman, M., Bálint, A., & Höschele, P. (2022). OSCCAR: Future occupant safety for crashes in cars (No. D1.3).
Dozza, M. (2020). What is the relation between crashes from crash databases and near crashes from naturalistic data? Journal of Transportation Safety & Security, 12(1), 37–51. DOI: https://doi.org/10.1080/19439962.2019.1591553
Engström, J., & Aust, M. L. (2011). Adaptive behavior in the simulator: Implications for active safety system evaluation. In D. L. Fisher, M. Rizzo, J. Caird, & J. D. Lee (Eds.), Handbook of driving simulation for engineering, medicine, and psychology. CRC Press. DOI: https://doi.org/10.1201/b10836-42
Engström, J., Liu, S.-Y., Dinparastdjadid, A., & Simoiu, C. (2022). Modeling road user response timing in naturalistic settings: A surprise-based framework (No. arXiv:2208.08651). Article arXiv:2208.08651.
Farah, H., & Azevedo, C. L. (2017). Safety analysis of passing maneuvers using extreme value theory. IATSS Research, 41(1), 12–21. DOI: https://doi.org/10.1016/j.iatssr.2016.07.001
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2017). Visualization in bayesian workflow. arXiv Preprint arXiv:1709.01449.
General Motors Corporation Research and Development Center. (2005). Automotive collision avoidance system field operational test: Final program report (DOT HS 809 886). U.S. Department of Transportation, National Highway Traffic Safety Administration.
Hoffman, M. D., & Gelman, A. (2014). The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15(1), 1593–1623.
Kamel, A., Sayed, T., & Fu, C. (2022). Real-time safety analysis using autonomous vehicle data: A bayesian hierarchical extreme value model. Transportmetrica B: Transport Dynamics, 1–21. DOI: https://doi.org/10.1080/21680566.2022.2135634
Kay, M. (2024). tidybayes: Tidy data and geoms for Bayesian models.
Kusano, K., Beatty, K., Schnelle, S., Favarò, F., Crary, C., & Victor, T. (2022). Collision avoidance testing of the waymo automated driving system.
Kusano, K., & Victor, T. (2022). Methodology for determining maximum injury potential for automated driving system evaluation. Traffic Injury Prevention, 0(0), 1–4. DOI: https://doi.org/10.1080/15389588.2022.2125231
Lamble, D., Laakso, M., & Summala, H. (1999). Detection thresholds in car following situations and peripheral vision: Implications for positioning of visually demanding in-car displays. Ergonomics, 42(6), 807–815. DOI: https://doi.org/10.1080/001401399185306
Li, Y., Li, K., Zheng, Y., Morys, B., Pan, S., & Wang, J. (2021). Threat assessment techniques in intelligent vehicles: A comparative survey. IEEE Intelligent Transportation Systems Magazine, 13(4), 71–91. DOI: https://doi.org/10.1109/MITS.2019.2907633
Makridis, M., Mattas, K., & Ciuffo, B. (2020). Response time and time headway of an adaptive cruise control. An empirical characterization and potential impacts on road capacity. IEEE Transactions on Intelligent Transportation Systems, 21(4), 1677–1686. DOI: https://doi.org/10.1109/TITS.2019.2948646
Malta, L., Aust, M. L., Faber, F., Metz, B., Pierre, G. S., Benmimoun, M., & Schäfer, R. (2012). EuroFOT deliverable 6.4 - final results: Impacts on traffic safety.
Markkula, G., Engström, J., Lodin, J., Bärgman, J., & Victor, T. (2016). A farewell to brake reaction times? Kinematics-dependent brake response in naturalistic rear-end emergencies. Accident Analysis & Prevention, 95, Part A, 209–226. DOI: https://doi.org/10.1016/j.aap.2016.07.007
McElreath, R. (2019). Statistical Rethinking: A Bayesian Course with Examples in R and Stan (2nd ed.). DOI: https://doi.org/10.1201/9780429029608
Morando, A., Victor, T., & Dozza, M. (2019). A reference model for driver attention in automation: Glance behavior changes during lateral and longitudinal assistance. IEEE Transactions on Intelligent Transportation Systems, 20(8), 2999–3009. DOI: https://doi.org/10.1109/TITS.2018.2870909
National Center for Statistics and Analysis,. (2022). Distracted driving 2020 - summary of statistical findings (Research Note No. DOT HS 813 309). National Highway Traffic Safety Administration,.
Olleja, P., Bärgman, J., & Lubbe, N. (2022). Can non-crash naturalistic driving data be an alternative to crash data for use in virtual assessment of the safety performance of automated emergency braking systems? Journal of Safety Research. DOI: https://doi.org/10.1016/j.jsr.2022.08.011
Orsini, F., Gecchele, G., Gastaldi, M., & Rossi, R. (2020). Large-scale road safety evaluation using extreme value theory. IET Intelligent Transport Systems, 14(9), 1004–1012. DOI: https://doi.org/10.1049/iet-its.2019.0633
Orsini, F., Gecchele, G., Rossi, R., & Gastaldi, M. (2021). A conflict-based approach for real-time road safety analysis: Comparative evaluation with crash-based models. Accident Analysis & Prevention, 161, 106382. DOI: https://doi.org/10.1016/j.aap.2021.106382
Otte, D., Krettek, C., Brunner, H., & Zwipp, H. (2003). Scientific approach and methodology of a new in-depth investigation study in germany called GIDAS. Proceedings of 18th International Technical Conference on the Enhanced Safety of Vehicles.
R Core Team. (2022). R: A language and environment for statistical computing.
Rudin-Brown, C. M., & Parker, H. A. (2004). Behavioural adaptation to adaptive cruise control (ACC): Implications for preventive strategies. Transportation Research Part F: Traffic Psychology and Behaviour, 7(2), 59–76. DOI: https://doi.org/10.1016/j.trf.2004.02.001
Singh, S. (2015). Critical reasons for crashes investigated in the national motor vehicle crash causation survey. (Traffic safety facts crash stats. Report no. DOT HS 812 115) (pp. 1–2).
Smiley, A. (2000). Behavioral adaptation, safety, and intelligent transportation systems. Transportation Research Record: Journal of the Transportation Research Board, 1724, 47–51. DOI: https://doi.org/10.3141/1724-07
Songchitruksa, P., & Tarko, A. P. (2006). The extreme value theory approach to safety estimation. Accident Analysis & Prevention, 38(4), 811–822. DOI: https://doi.org/10.1016/j.aap.2006.02.003
Summala, H. (2000). Brake reaction times and driver behavior analysis. Transportation Human Factors, 2(3), 217–226. DOI: https://doi.org/10.1207/STHF0203_2
Summala, H. (2007). Towards understanding motivational and emotional factors in driver behaviour: Comfort through satisficing. In P. C. Cacciabue (Ed.), Modelling driver behaviour in automotive environments: Critical issues in driver interactions with intelligent transport systems (pp. 189–207). Springer London. DOI: https://doi.org/10.1007/978-1-84628-618-6_11
Summala, H., Lamble, D., & Laakso, M. (1998). Driving experience and perception of the lead car’s braking when looking at in-car targets. Accident Analysis & Prevention, 30(4), 401–407. DOI: https://doi.org/10.1016/S0001-4575(98)00005-0
Taieb-Maimon, M., & Shinar, D. (2001). Minimum and comfortable driving headways: Reality versus perception. Human Factors, 43(1), 159–172. DOI: https://doi.org/10.1518/001872001775992543
Tarko, A. P. (2012). Use of crash surrogates and exceedance statistics to estimate road safety. Accident Analysis & Prevention, 45, 230–240. DOI: https://doi.org/10.1016/j.aap.2011.07.008
Technical Group Road Safety. (2009). Distance between vehicles (No. 2009/10.1). Conference of European Directors of Roads (CEDR).
UNECE. (2022). UN regulation no. 157 - automated lane keeping systems (ALKS) (No. E /ECE/TRANS/505/Rev.3/Add.156/Amend.1). United Nations Economic Commission for Europe.
Varotto, S. F., Mons, C., Hogema, J. H., Christoph, M., Nes, N. van, & Martens, M. H. (2022). Do adaptive cruise control and lane keeping systems make the longitudinal vehicle control safer? Insights into speeding and time gaps shorter than one second from a naturalistic driving study with SAE level 2 automation. Transportation Research Part C: Emerging Technologies, 141, 103756. DOI: https://doi.org/10.1016/j.trc.2022.103756
Victor, T., Dozza, M., Bärgman, J., Boda, C.-N., Engström, J., Flannagan, C., Lee, J. D., & Markkula, G. (2015). SHRP2 - analysis of naturalistic driving study data: Safer glances, driver inattention and crash risk. DOI: https://doi.org/10.17226/22297
Victor, T., Tivesten, E., Gustavsson, P., Johansson, J., Sangberg, F., & Ljung Aust, M. (2018). Automation expectation mismatch: Incorrect prediction despite eyes on threat and hands on wheel. HUman Factors, 60(8), 1095–1116. DOI: https://doi.org/10.1177/0018720818788164
Westhofen, L., Neurohr, C., Koopmann, T., Butz, M., Schütt, B., Utesch, F., Kramer, B., Gutenkunst, C., & Böde, E. (2022). Criticality metrics for automated driving: A review and suitability analysis of the state of the art. Archives of Computational Methods in Engineering. DOI: https://doi.org/10.1007/s11831-022-09788-7
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. DOI: https://doi.org/10.21105/joss.01686
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Alberto Morando

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
HORIZON EUROPE European Research Council
Grant numbers 814.735