Safety performance functions in a road environment with automated vehicles
DOI:
https://doi.org/10.55329/fzyz2882Keywords:
automated vehicles (AVs), crashes, market penetration, safety performance functions (SPFs)Abstract
The reduction of road fatalities can be achieved by intervening in various aspects, including infrastructure, transportation policy, vehicles, and driver behavior. One of the most promising solutions to solve this issue is to rely on Automated Vehicles (AVs), which can prevent human errors, which account for most crashes. However, the impact of AVs on road safety is still unquantifiable. The reason resides in a lack of observed data, as well as in the uncertainty about AV introduction on roads and their interaction with other vehicles and users. In this paper, a methodology to predict the impact of AVs is proposed, relying on Safety Performance Functions (SPFs). An ad hoc SPF for AVs has been developed just for multivehicle crashes, based on a set of market penetration rates, to propose a mathematical model that can include recent technological innovations in road traffic and be adapted to other contexts. Considering the area of the Province of Bari and three different time horizons, crashes were simulated with the presence of AVs in different traffic scenarios. The proposed scenarios were taken from extensive literature studies about the deployment of AVs. The SPF for the predicted crashes was developed by adding one coefficient that considers the presence of AVs to the baseline equation, controlling for the road geometry. The fitted models show a satisfactory goodness-of-fit, based on different metrics, including CuRe (Cumulative Residuals) plots.
Downloads
References
Ahmed, M., Huang, H., Abdel-Aty, M., & Guevara, B. (2011). Exploring a Bayesian hierarchical approach for developing safety performance functions for a mountainous freeway. Accident Analysis & Prevention, 43(4), 1581–1589. DOI: https://doi.org/10.1016/j.aap.2011.03.021
Ambros, J., Jurewicz, C., Turner, S., & Kieć, M. (2018). An international review of challenges and opportunities in development and use of crash prediction models. European Transport Research Review, 10(2), 1–10. DOI: https://doi.org/10.1186/s12544-018-0307-7
Arun, A., Haque, M. M., Bhaskar, A., Washington, S., & Sayed, T. (2021). A systematic mapping review of surrogate safety assessment using traffic conflict techniques. Accident Analysis & Prevention, 153, 106016. DOI: https://doi.org/10.1016/j.aap.2021.106016
Bagschik, G., Menzel, T., & Maurer, M. (2018). Ontology based scene creation for the development of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV) (pp. 1813–1820). IEEE. DOI: https://doi.org/10.1109/IVS.2018.8500632
Barceló, J., Codina, E., Casas, J., Ferrer, J. L., & García, D. (2005). Microscopic traffic simulation: A tool for the design, analysis and evaluation of intelligent transport systems. Journal of Intelligent and Robotic Systems, 41(2), 173–203. DOI: https://doi.org/10.1007/s10846-005-3808-2
Basso, F., Pezoa, R., Varas, M., & Villalobos, M. (2021). A deep learning approach for real-time crash prediction using vehicle-by-vehicle data. Accident Analysis & Prevention, 162, 106409. DOI: https://doi.org/10.1016/j.aap.2021.106409
Bhowmik, T., Rahman, M., Yasmin, S., & Eluru, N. (2021). Exploring analytical, simulation-based, and hybrid model structures for multivariate crash frequency modeling. Analytic Methods in Accident Research, 31, 100167. DOI: https://doi.org/10.1016/j.amar.2021.100167
Cafiso, S., D’Agostino, C., & Persaud, B. (2018). Investigating the influence of segmentation in estimating safety performance functions for roadway sections. Journal of Traffic and Transportation Engineering (English Edition), 5(2), 129–136. DOI: https://doi.org/10.1016/j.jtte.2017.10.001
Chen, H., Chen, H., Zhou, R., Liu, Z., & Sun, X. (2021). Exploring the mechanism of crashes with autonomous vehicles using machine learning. Mathematical Problems in Engineering, 2021(1), 5524356. DOI: https://doi.org/10.1155/2021/5524356
Claros, B., Sun, C., & Edara, P. (2018). Missouri-specific crash prediction model for signalized intersections. Transportation Research Record, 2672(30), 32–42. DOI: https://doi.org/10.1177/0361198118768526
Colonna, P., Berloco, N., Intini, P., & Ranieri, V. (2021). Manuale per i progetti di adeguamento alla sicurezza stradale sostenibile (pp. 1–189). Manuale per i progetti di adeguamento alla sicurezza stradale sostenibile.
Colonna, P., Intini, P., Berloco, N., & Ranieri, V. (2018). Integrated American-European protocol for safety interventions on existing two-lane rural roads. European Transport Research Review, 10(1), 1–21. DOI: https://doi.org/10.1007/s12544-017-0274-4
Coropulis, S., Berloco, N., Gentile, R., Intini, P., & Ranieri, V. (2023). The use of microscopic simulators for safety assessment in automated and partially automated scenarios: a comparison. Transportation Research Procedia, 69, 313–320. DOI: https://doi.org/10.1016/j.trpro.2023.02.177
Coropulis, S., Berloco, N., Gentile, R., Intini, P., & Ranieri, V. (2024). Traffic microsimulation for road safety assessments of vehicle automation scenarios: Model comparison and sensitivity analysis. Simulation Modelling Practice and Theory, 130, 102868. DOI: https://doi.org/10.1016/j.simpat.2023.102868
Coropulis, S., Berloco, N., Intini, P., & Ranieri, V. (2021). A scientific approach to determine the benefits of automation and technological innovation on road safety. In 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1–6). IEEE. DOI: https://doi.org/10.1109/EEEIC/ICPSEurope51590.2021.9584759
Coropulis, S., Berloco, N., Intini, P., & Ranieri, V. (2025). A safety assessment planning strategy proposal within the context of sustainable Urban mobility Plans: How to account for Connected and Autonomous vehicles in safety analysis in the SUMP? Travel Behaviour and Society, 41, 101083. DOI: https://doi.org/10.1016/j.tbs.2025.101083
de Gelder, E., & Camp, O. O. D. (2020). Procedure for the Safety Assessment of an Autonomous Vehicle Using Real-World Scenarios. arXiv preprint arXiv:2012.00643.
de Gelder, E., Paardekooper, J. P., Op den Camp, O., & De Schutter, B. (2019). Safety assessment of automated vehicles: how to determine whether we have collected enough field data? Traffic Injury Prevention, 20(sup1), S162–S170. DOI: https://doi.org/10.1080/15389588.2019.1602727
de Zwart, R., Kamphuis, K., & Cleij, D. (2023). Driver behavioural adaptations to simulated automated vehicles, potential implications for traffic microsimulation. Transportation Research Part F: Traffic Psychology and Behaviour, 92, 255–265. DOI: https://doi.org/10.1016/j.trf.2022.11.012
Dell’Acqua, G., & Russo, F. (2011). Safety performance functions for low-volume roads. The Baltic Journal of Road and Bridge Engineering, 6(4), 225–234. DOI: https://doi.org/10.3846/bjrbe.2011.29
Desta, R., & Toth, J. (2022). Macroscopic experiments on coexistence of autonomous vehicle behavior on various heterogeneous traffic conditions. Journal of Advanced Transportation, 2022(1), 3552167. DOI: https://doi.org/10.1155/2022/3552167
Donnell, E., Gayah, V., & Li, L. (2016). Regionalized safety performance functions (No. FHWA-PA-2016-001-PSU WO 017, LTI). Pennsylvania. Dept. of Transportation.
El-Basyouny, K., & Sayed, T. (2013). Safety performance functions using traffic conflicts. Safety Science, 51(1), 160–164. DOI: https://doi.org/10.1016/j.ssci.2012.04.015
Elli, M., Wishart, J., Como, S., Dhakshinamoorthy, S., & Weast, J. (2021). Evaluation of operational safety assessment (osa) metrics for automated vehicles in simulation. SAE Technical Paper, 01–0868. DOI: https://doi.org/10.4271/2021-01-0868
ElSahly, O., & Abdelfatah, A. (2020). Influence of autonomous vehicles on freeway traffic performance for undersaturated traffic conditions. Athens J. Technol. Eng, 7(2), 117–132. DOI: https://doi.org/10.30958/ajte.7-2-3
Elvik, R., & Goel, R. (2019). Safety-in-numbers: An updated meta-analysis of estimates. Accident Analysis & Prevention, 129, 136–147. DOI: https://doi.org/10.1016/j.aap.2019.05.019
Essa, M., Sayed, T., & Reyad, P. (2019). Transferability of real-time safety performance functions for signalized intersections. Accident Analysis & Prevention, 129, 263–276. DOI: https://doi.org/10.1016/j.aap.2019.05.029
Farid, A., Abdel-Aty, M., Lee, J., Eluru, N., & Wang, J. H. (2016). Exploring the transferability of safety performance functions. Accident Analysis & Prevention, 94, 143–152. DOI: https://doi.org/10.1016/j.aap.2016.04.031
García, A., Camacho-Torregrosa, F. J., Llopis-Castelló, D., & Monserrat, J. F. (2021). Smart Roads Classification. Special Project. World Road Association –PIARC.
Gaweesh, S. M., Ahmed, I. U., Ahmed, M. M., & Wulff, S. S. (2022). Developing Statewide Safety Performance Functions for Commercial Trucks Transporting Hazardous Materials on Interstate Rural Roads in Wyoming. Transportation Research Record, 03611981221103231. DOI: https://doi.org/10.1177/03611981221103231
Giuffrè, O., Granà, A., Tumminello, M. L., Giuffrè, T., Trubia, S., Sferlazza, A., & Rencelj, M. (2018). Evaluation of roundabout safety performance through surrogate safety measures from microsimulation. Journal of Advanced Transportation, 2018(1), 4915970. DOI: https://doi.org/10.1155/2018/4915970
Guido, G., Vitale, A., Astarita, V., & Giofrè, V. P. (2019). Comparison analysis between real accident locations and simulated risk areas in an urban road network. Safety, 5(3), 60. DOI: https://doi.org/10.3390/safety5030060
Hauer, E., & Bamfo, J. (1997, November). Two tools for finding what function links the dependent variable to the explanatory variables. Proceedings of the ICTCT 1997 Conference.
Huang, H., Song, B., Xu, P., Zeng, Q., Lee, J., & Abdel-Aty, M. (2016). Macro and micro models for zonal crash prediction with application in hot zones identification. Journal of Transport Geography, 54, 248–256. DOI: https://doi.org/10.1016/j.jtrangeo.2016.06.012
Ims, A. B., & Pedersen, H. B. (2021). Simulation of Automated Vehicles in AIMSUN [Master’s thesis]. NTNU.
Intini, P., Berloco, N., Binetti, R., Fonzone, A., Ranieri, V., & Colonna, P. (2019). Transferred versus local Safety Performance Functions: A geographical analysis considering two European case studies. Safety Science, 120, 906–921. DOI: https://doi.org/10.1016/j.ssci.2019.08.013
Intini, P., Berloco, N., Cavalluzzi, G., Lord, D., Ranieri, V., & Colonna, P. (2021). The variability of urban safety performance functions for different road elements: an Italian case study. European Transport Research Review, 13(1), 1–14. DOI: https://doi.org/10.1186/s12544-021-00490-6
Isebrands, H., & Hallmark, S. (2012). Statistical analysis and development of crash prediction model for roundabouts on high-speed rural roadways. Transportation Research Record, 2312(1), 3–13. DOI: https://doi.org/10.3141/2312-01
Johansson, R., Alissa, S., Bengtsson, S., Bergenhem, C., Bridal, O., Cassel, A., … Werneman, A. (2017). A strategy for assessing safe use of sensors in autonomous road vehicles. In Computer Safety, Reliability, and Security: 36th International Conference, SAFECOMP 2017, Trento, Italy, September 13-15, 2017, Proceedings 36 (pp. 149–161). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-66266-4_10
Jonasson, J. K., & Rootzén, H. (2014). Internal validation of near-crashes in naturalistic driving studies: A continuous and multivariate approach. Accident Analysis & Prevention, 62, 102–109. DOI: https://doi.org/10.1016/j.aap.2013.09.013
Kusari, A., Li, P., Yang, H., Punshi, N., Rasulis, M., Bogard, S., & LeBlanc, D. J. (2022). Enhancing SUMO simulator for simulation based testing and validation of autonomous vehicles. In 2022 ieee intelligent vehicles symposium (IV) (pp. 829–835). IEEE. DOI: https://doi.org/10.1109/IV51971.2022.9827241
Lee, J., Abdel-Aty, M., De Blasiis, M. R., Wang, X., & Mattei, I. (2019). International transferability of macro-level safety performance functions: A case study of the United States and Italy. Transportation Safety and Environment, 1(1), 68–78. DOI: https://doi.org/10.1093/transp/tdz001
Li, J. Q., & Yu, W. (2021). Enhanced safety performance function for highway segments in Oklahoma. Journal of Infrastructure Systems, 27(3), 04021018. DOI: https://doi.org/10.1061/(ASCE)IS.1943-555X.0000616
Lord, D., & Mannering, F. (2010). The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transportation Research Part A: Policy and Practice, 44(5), 291–305. DOI: https://doi.org/10.1016/j.tra.2010.02.001
Lord, D., Qin, X., & Geedipally, S. R. (2021). Highway safety analytics and modeling. Elsevier.
Lyon, C., Persaud, B., & Himes, S. (2017). Investigating total annual average daily traffic as a surrogate for motorcycle volumes in estimating safety performance functions for motorcycle crashes. Transportation Research Record, 2637(1), 9–16. DOI: https://doi.org/10.3141/2637-02
Manasreh, D., Nazzal, M. D., Talha, S. A., Khanapuri, E., Sharma, R., & Kim, D. (2022). Application of autonomous vehicles for automated roadside safety assessment. Transportation Research Record, 03611981221095090. DOI: https://doi.org/10.1177/03611981221095090
Montella, A., & Imbriani, L. L. (2015). Safety performance functions incorporating design consistency variables. Accident Analysis & Prevention, 74, 133–144. DOI: https://doi.org/10.1016/j.aap.2014.10.019
Montella, A., Marzano, V., Mauriello, F., Vitillo, R., Fasanelli, R., Pernetti, M., & Galante, F. (2019). Development of macro-level safety performance functions in the city of Naples. Sustainability, 11(7), 1871. DOI: https://doi.org/10.3390/su11071871
Morando, M. M., Tian, Q., Truong, L. T., & Vu, H. L. (2018). Studying the safety impact of autonomous vehicles using simulation-based surrogate safety measures. Journal of Advanced Transportation, 2018. DOI: https://doi.org/10.1155/2018/6135183
Nakamura, H., Muslim, H., Kato, R., Préfontaine-Watanabe, S., Nakamura, H., Kaneko, H., … Taniguchi, S. (2022). Defining reasonably foreseeable parameter ranges using real-world traffic data for scenario-based safety assessment of automated vehicles. IEEE Access, 10, 37743–37760. DOI: https://doi.org/10.1109/ACCESS.2022.3162601
NASEM -National Academies of Sciences, Engineering, and Medicine-. (2019). Development of Roundabout Crash Prediction Models and Methods. The National Academies Press.
NASEM -National Academies of Sciences, Engineering, and Medicine-. (2021). Improved Prediction Models for Crash Types and Crash Severities. The National Academies Press.
National Academies of Sciences, Engineering, and Medicine. (2010). Highway safety manual (1st ed.).
Nordback, K., Marshall, W. E., & Janson, B. N. (2014). Bicyclist safety performance functions for a US city. Accident Analysis & Prevention, 65, 114–122. DOI: https://doi.org/10.1016/j.aap.2013.12.016
Papadoulis, A., Quddus, M., & Imprialou, M. (2019). Evaluating the safety impact of connected and autonomous vehicles on motorways. Accident Analysis & Prevention, 124, 12–22. DOI: https://doi.org/10.1016/j.aap.2018.12.019
Rahim, M. A., & Hassan, H. M. (2021). A deep learning based traffic crash severity prediction framework. Accident Analysis & Prevention, 154, 106090. DOI: https://doi.org/10.1016/j.aap.2021.106090
Raju, N., & Farah, H. (2021). Evolution of traffic microsimulation and its use for modeling connected and automated vehicles. Journal of Advanced Transportation, 2021(1), 2444363. DOI: https://doi.org/10.1155/2021/2444363
Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., & Diermeyer, F. (2020). Survey on scenario-based safety assessment of automated vehicles. IEEE Access, 8, 87456–87477. DOI: https://doi.org/10.1109/ACCESS.2020.2993730
Riedmaier, S., Schneider, J., Danquah, B., Schick, B., & Diermeyer, F. (2021). Non-deterministic model validation methodology for simulation-based safety assessment of automated vehicles. Simulation Modelling Practice and Theory, 109, 102274. DOI: https://doi.org/10.1016/j.simpat.2021.102274
Santos, K., Dias, J. P., & Amado, C. (2022). A literature review of machine learning algorithms for crash injury severity prediction. Journal of Safety Research, 80, 254–269. DOI: https://doi.org/10.1016/j.jsr.2021.12.007
Shahdah, U., Saccomanno, F., & Persaud, B. (2015). Application of traffic microsimulation for evaluating safety performance of urban signalized intersections. Transportation Research Part C: Emerging Technologies, 60, 96–104. DOI: https://doi.org/10.1016/j.trc.2015.06.010
Singh, M., Cheng, W., Samuelson, D., Kwong, J., Li, B., Cao, M., & Li, Y. (2021). Development of pedestrian-and vehicle-related safety performance functions using Bayesian bivariate hierarchical models with mode-specific covariates. Journal of Safety Research, 78, 180–188. DOI: https://doi.org/10.1016/j.jsr.2021.05.008
Sinha, A., Chand, S., Wijayaratna, K. P., Virdi, N., & Dixit, V. (2020). Comprehensive safety assessment in mixed fleets with connected and automated vehicles: A crash severity and rate evaluation of conventional vehicles. Accident Analysis & Prevention, 142, 105567. DOI: https://doi.org/10.1016/j.aap.2020.105567
Tarko, A. P. (2018). Estimating the expected number of crashes with traffic conflicts and the Lomax Distribution–A theoretical and numerical exploration. Accident Analysis & Prevention, 113, 63–73. DOI: https://doi.org/10.1016/j.aap.2018.01.008
Thomas, L., Lan, B., Sanders, R. L., Frackelton, A., Gardner, S., & Hintze, M. (2017). Changing the future?: Development and application of pedestrian safety performance functions to prioritize locations in Seattle, Washington. Transportation Research Record, 2659(1), 212–223. DOI: https://doi.org/10.3141/2659-23
Vernon, D. D., Cook, L. J., Peterson, K. J., & Dean, J. M. (2004). Effect of repeal of the national maximum speed limit law on occurrence of crashes, injury crashes, and fatal crashes on Utah highways. Accident Analysis & Prevention, 36(2), 223–229. DOI: https://doi.org/10.1016/S0001-4575(02)00151-3
Virdi, N., Grzybowska, H., Waller, S. T., & Dixit, V. (2019). A safety assessment of mixed fleets with connected and autonomous vehicles using the surrogate safety assessment module. Accident Analysis & Prevention, 131, 95–111. DOI: https://doi.org/10.1016/j.aap.2019.06.001
Vrbanić, F., Čakija, D., Kušić, K., & Ivanjko, E. (2021). Traffic flow simulators with connected and autonomous vehicles: A short review. Transformation of Transportation, 15–30. DOI: https://doi.org/10.1007/978-3-030-66464-0_2
Wang, C., Xie, Y., Huang, H., & Liu, P. (2021). A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling. Accident Analysis & Prevention, 157, 106157. DOI: https://doi.org/10.1016/j.aap.2021.106157
Wang, S., & Li, Z. (2019). Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches. PloS One, 14(3), e0214550. DOI: https://doi.org/10.1371/journal.pone.0214550
Wen, X., Cui, Z., & Jian, S. (2022). Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset. Accident Analysis & Prevention, 172, 106689. DOI: https://doi.org/10.1016/j.aap.2022.106689
Winkle, T. (2016). Safety benefits of automated vehicles: Extended findings from accident research for development, validation and testing. In Autonomous driving (pp. 335–364). Springer. DOI: https://doi.org/10.1007/978-3-662-48847-8_17
Zheng, L., Sayed, T., & Essa, M. (2019). Validating the bivariate extreme value modeling approach for road safety estimation with different traffic conflict indicators. Accident Analysis & Prevention, 123, 314–323. DOI: https://doi.org/10.1016/j.aap.2018.12.007
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Stefano Coropulis, Nicola Berloco, Paolo Intini, Vittorio Ranieri

This work is licensed under a Creative Commons Attribution 4.0 International License.




