Assessing micromobility safety on horizontal curves of bike lanes: a video motion analysis methodology

Authors

DOI:

https://doi.org/10.55329/mmvw5208

Keywords:

bike lane, horizontal curve, micromobility, motion analysis, road safety, user behaviour

Abstract

This study introduces a novel surrogate safety indicator, the ‘effective radius’, and a dynamic tracking methodology for assessing the safety of micromobility (MM) users on isolated bike lane curves, with a focus on geometric characteristics. The methodology involves six main pillars, including site selection, geometric data collection, video recording, speed and position extraction, visualization, and analysis. Naturalistic video data of bike lane users are captured to observe user behavior, and specific points along the curve centerline are identified for monitoring lateral position and speed on a selected curve site in Valencia, Spain. The analysis centers on a bidirectional bike lane featuring a sharp horizontal curve, incorporating the effective radius criteria to evaluate MM users' responses to geometry and environmental conditions. Findings reveal significant variation in effective radius, especially during left turns, primarily due to the geometry factor and the lane's positioning outside the curve. Lateral displacement heat maps indicate that left-turn users often have higher tendencies to violate dedicated lanes, posing collision risks. The speed analysis underscores potential conflicts and reduced handling capabilities for users breaching lane boundaries. The imperative need for well-informed design and safety measures in micromobility infrastructure is emphasized, considering the impact of geometric factors on user behavior and safety.

Downloads

Download data is not yet available.

Author Biographies

Morteza Hossein Sabbaghian, Universitat Politècnica de València, Spain

Morteza Hossein Sabbaghian is a PhD candidate in Transportation Engineering at the Universitat Politècnica de València. His expertise includes road safety, geometric design, micromobility, traffic simulation, and airside planning. He has worked as a researcher and teaching assistant at the University of Mississippi, where he contributed to projects on innovative intersections, microsimulation, surrogate measures of safety, and autonomous vehicles. In 2023, he received the UP4 Award for his ‘Smart Junction Concept’.

CRediT contribution: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing—original draft, Writing—review & editing.

David Llopis-Castelló, Universitat Politècnica de València, Spain

David Llopis-Castello is an Associate Professor at the Universitat Politècnica de València, School of Civil Engineering. He completed his Ph.D. in March 2018, focusing on two-lane rural road design and safety. He has co-authored over 50 publications, participated in 13 research projects, and received awards such as the AIMSUN and Abertis Awards. He has conducted research at Università degli Studi Roma Tre and North Carolina State University and taught at universities in the USA, Italy, China, Lebanon, Jordan, and Egypt.

CRediT contribution: Conceptualization, Methodology, Supervision, Writing—review & editing.

Alfredo García, Universitat Politècnica de València, Spain

Alfredo Garcia is a Professor of Highway Engineering at the Polytechnic University of Valencia. His expertise spans road safety, geometric design, traffic engineering, smart roads, and advanced and sustainable pavements. He is a leading authority on Connected and Autonomous Vehicles (CAVs) and their integration into modern infrastructure. He has significantly contributed to the development of innovative and efficient road systems. His research and work focus on advancing the safety and performance of road networks.

CRediT contribution: Conceptualization, Methodology, Supervision, Writing—review & editing.

References

Aarts, L. T., L. J. van den Broek, M. J. Oude, R. J. Decae, N. M. Bos, C. Goldenbeld, G. J. Wijlhuizen, C. Mons, A. T. G. Hoekstra, F. D. Bijleveld (2022), 'De Staat van de Verkeersveiligheid 2022. Trend in aantal verkeersdoden en -gewonden daalt niet [The State of Road Safety 2022. Trend in the number of road deaths and injuries is not decreasing]', SWOV Institute for Road Safety Research, R-2022-10.

Afghari, A. P., J. Vos, H. Farah, E. Papadimitriou (2023), ' “I did not see that coming”: A latent variable structural equation model for understanding the effect of road predictability on crashes along horizontal curves', Accident Analysis & Prevention, 187, 107075. DOI: https://doi.org/10.1016/j.aap.2023.107075

Almallah, M., W. K. Alhajyaseen, C. Dias (2024), 'Safety assessment of on-road cycling lanes: A comparative study of different layouts using driving simulator', Accident Analysis & Prevention, 196, 107431. DOI: https://doi.org/10.1016/j.aap.2023.107431

Arun, A., M. Haque, S. Washington, F. Mannering (2023), 'A physics-informed road user safety field theory for traffic safety assessments applying artificial intelligence-based video analytics', Analytic Methods in Accident Research, 37, 100252. DOI: https://doi.org/10.1016/j.amar.2022.100252

Bao, S., D. J. Leblanc, J. R. Sayer, C. Flannagan (2012), 'Heavy-Truck Drivers’ Following Behavior With Intervention of an Integrated, In-Vehicle Crash Warning System: A Field Evaluation', The Journal of Human Factors and Ergonomics Society, 54(5), 687–697. DOI: https://doi.org/10.1177/0018720812439412

Bos, L., M. A. Slawinski, R. A. Slawinski, T. Stanoev (2024), 'Modelling of a cyclist’s power for time trials on a velodrome', Sports Engineering, 27(1). DOI: https://doi.org/10.1007/s12283-024-00451-x

Bos, N. M., F. D. Bijleveld, R. J. Decae, L. Aarts (2022), 'Ernstig verkeersgewonden 2021 [Serious road injuries 2021]', SWOV Institute for Road Safety Research, R-2022-11.

Cavadas, J., C. L. Azevedo, H. Farah, A. Ferreira (2020), 'Road safety of passing maneuvers: A bivariate extreme value theory approach under non-stationary conditions', Accident Analysis & Prevention, 134, 105315. DOI: https://doi.org/10.1016/j.aap.2019.105315

Chen, C., H. Wang, J. Roll, K. Nordback, Y. Wang (2020), 'Using bicycle app data to develop Safety Performance Functions (SPFs) for bicyclists at intersections: A generic framework', Transportation Research Part A: Policy and Practice, 132, 1034–1052. DOI: https://doi.org/10.1016/j.tra.2019.12.034

Davidse, R. J., K. Duijvenvoorde, W. J. R. Louwerse (2020), 'Dodelijke verkeersongevallen op rijkswegen in 2019. Analyse van ongevals- en letselfactoren en daaruit volgende aanknopingspunten voor maatregelen [Fatal road crashes on national roads in 2019. Analysis of crash and injury factors and resulting potential countermeasures]', SWOV Institute for Road Safety Research, R-2020-29.

DGT, (n/d), 'Seguridad vial 2030 [Road Safety startegy 2030]', Dirección General Tráfico.

Dhahir, B., Y. Hassan (2019), 'Probabilistic, safety-explicit design of horizontal curves on two-lane rural highways based on reliability analysis of naturalistic driving data', Accident Analysis & Prevention, 123, 200–210. DOI: https://doi.org/10.1016/j.aap.2018.11.024

Dozza, M., A. Violin, A. Rasch (2022), 'A data-driven framework for the safe integration of micro-mobility into the transport system: Comparing bicycles and e-scooters in field trials', Journal of Safety Research, 81, 67–77. DOI: https://doi.org/10.1016/j.jsr.2022.01.007

GIDAS, (n/d), 'About GIDAS: Methodology', Federal Highway Research Institute (BASt) and Research Association of Automotive Technology (FAT).

Gildea, K., D. Hall, C. Mercadal-Baudart, B. Caulfield, C. Simms (2023), 'Computer vision-based assessment of cyclist-tram track interactions for predictive modeling of crossing success', Journal of Safety Research, 87, 202–216. DOI: https://doi.org/10.1016/j.jsr.2023.09.017

GoogleMaps, (n/d), 'Valencia'.

Haarbrink, L. (2021), 'Road Safety Strategic Plan: A mission-oriented innovation systems approach in the Netherlands', Utrech University, the Netherlands, Master thesis.

Hossein Sabbaghian, M., A. A. Kordani, B. T. Kallebasti, A. Attari (2015), 'Effect of shoulder width and drop-off on vehicle rollover and shoulder crossover using vehicle dynamics simulations', 5th International Symposium on Highway Geometric Design, Vancouver, Canada, 22–24 June 2015.

Hossein Sabbaghian, M., D. Llopis-Castelló, A. García (2023), 'A Safe Infrastructure for Micromobility: The Current State of Knowledge', Sustainability, 15(13). DOI: https://doi.org/10.3390/su151310140

IenW, (2018), 'Het strategisch plan verkeersveiligheid 2030: Veilig van deur tot deur [The Road Safety Strategic Plan 2030: Safely from door to door]', Ministerie van Infrastructuur en Waterstaat.

Johansson, J. (2023), 'Analysis of free-riding behaviour using instrumented bicycles', Linköping University, Sweden, Master thesis.

Kathuria, A., P. Vedagiri (2020), 'Evaluating pedestrian vehicle interaction dynamics at un-signalized intersections: A proactive approach for safety analysis', Accident Analysis & Prevention, 134, 105316. DOI: https://doi.org/10.1016/j.aap.2019.105316

Kordani, A. A., B. Tavassoli, M. Hossein Sabbaghian (2015), 'Analyzing the influence of coinciding horizontal curves and vertical sag curves on side friction factor and lateral acceleration using simulation modeling', 5th International Symposium on Highway Geometric Design, Vancouver, Canada, 22–24 June 2015.

Laureshyn, A., C. Johnsson, T. De Ceunynck, Å. Svensson, M. de Goede, N. Saunier, P. Wlodarek, A. R. A. van der Horst, S. Daniels (2016), 'Review of current study methods for VRU safety. Appendix 6 – Scoping review: surrogate measures of safety in site-based road traffic observations', InDeV, Horizon 2020 project, Deliverable 2.1 – part 5.

Lu, C., X. He, H. V. Lint, H. Tu, R. Happee, M. Wang (2021), 'Performance evaluation of surrogate measures of safety with naturalistic driving data', Accident Analysis & Prevention, 162, 106403. DOI: https://doi.org/10.1016/j.aap.2021.106403

Mullakkal-Babu, F. A., M. Wang, X. He, B. V. Arem, R. Happee (2020), 'Probabilistic field approach for motorway driving risk assessment', Transportation Research Part C: Emerging Technologies, 118, 102716. DOI: https://doi.org/10.1016/j.trc.2020.102716

Nabavi Niaki, M. S., N. Saunier, L. F. Miranda-Moreno (2019), 'Is that move safe? Case study of cyclist movements at intersections with cycling discontinuities', Accident Analysis & Prevention, 131, 239–247. DOI: https://doi.org/10.1016/j.aap.2019.07.006

Nee, P. J., J. G. Herterich (2022), 'Modelling road cycling as motion on a curve', Sports Engineering, 25(12). DOI: https://doi.org/10.1007/s12283-022-00376-3

NYC DOT, (n/d), 'Two-Way Bike Lane', Street Design Manual, New York City Department of Transportation.

Paolino, S., F. Zampa (2023), 'Determination of vehicle speed from recorded video using the open-source software Kinovea', Journal of Forensic Sciences, 68(2), 667–675. DOI: https://doi.org/10.1111/1556-4029.15191

Pérez-Zuriaga, A. M., J. Dols, M. Nespereira, A. García, A. Sajurjo-De-No (2023), 'Analysis of the consequences of car to micromobility user side impact crashes', Journal of Safety Research, 87, 168–175. DOI: https://doi.org/10.1016/j.jsr.2023.09.014

Puig-Diví, A., C. Escalona-Marfil, J. M. Padullés-Riu, A. Busquets, X. Padullés-Chando, D. Marcos-Ruiz (2019), 'Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives', PLoS ONE, 14(6), e0216448. DOI: https://doi.org/10.1371/journal.pone.0216448

Reijne, M. M., S. G. Dehkordi, S. Glaser, D. Twisk, A. L. Schwab (2022), 'A Modelling Study to Examine Threat Assessment Algorithms Performance in Predicting Cyclist Fall Risk in Safety Critical Bicycle-Automatic Vehicle Interactions', 10th International Cycling Safety Conference (ICSC), Dresden, Germany, 8–11 November 2022.

Rodríguez-Esparza, E., O. Ramos-Soto, A. D. Masegosa, E. Onieva, D. Oliva, A. Arriandiaga, A. Ghosh (2024), 'Optimizing Road Traffic Surveillance: A Robust Hyper-Heuristic Approach for Vehicle Segmentation', IEEE Access, 12, 29503–29524. DOI: https://doi.org/10.1109/ACCESS.2024.3369039

Sanjurjo-De-No, A., A. M. Pérez-Zuriaga, A. García (2023), 'Analysis and prediction of injury severity in single micromobility crashes with Random Forest', Heliyon, 9(12), e23062. DOI: https://doi.org/10.1016/j.heliyon.2023.e23062

Saunier, N., A. Laureshyn (2021), 'Surrogate Measures of Safety', in R. Vickerman, (ed.), International Encyclopedia of Transportation, (Oxford, UK: Elsevier) pp. 662-667. DOI: https://doi.org/10.1016/B978-0-08-102671-7.10197-6

Shoman, M. M., H. Imine, E. M. Acerra, C. Lantieri (2023), 'Evaluation of cycling safety and comfort in bad weather and surface conditions using an instrumented bicycle', IEEE Access, 11, 15096–15108. DOI: https://doi.org/10.1109/ACCESS.2023.3242583

Swarttouw, H. (2023), 'Tweet sent on 8 December 2023, 9:30 am', @copenhenken.

SWOV, (2023), 'How are serious road injuries distributed by age and gender?', SWOV Institute for Road Safety Research.

SWOV, (2024), 'Road deaths in the Netherlands', SWOV Institute for Road Safety Research.

SWOV, (2023), 'The book of abstracts', 11th International Cycling Safety Conference 2023, the Hague, the Netherlands, 15–17 November 2023.

Uijtdewilligen, T., M. B. Ulak, G. J. Wijlhuizen, F. Bijleveld, K. T. Geurs, A. Dijkstra (2023), 'Examining the crash risk factors associated with cycling by considering spatial and temporal disaggregation of exposure: Findings from four Dutch cities', Journal of Transportation Safety & Security. DOI: https://doi.org/10.1080/19439962.2023.2273547

Ul-Abdin, Z., S. Z. Rajper, K. Schotte, P. De Winne, H. De Backer (2020), 'Analytical geometric design of bicycle paths', Proceedings of the Institution of Civil Engineers: Transport, 173(6), 361–379. DOI: https://doi.org/10.1680/jtran.17.00162

Vansteenkiste, P., G. Cardon, E. D'Hondt, R. Philippaerts, M. Lenoir (2013), 'The visual control of bicycle steering: the effects of speed and path width', Accident Analysis & Prevention, 51, 222–227. DOI: https://doi.org/10.1016/j.aap.2012.11.025

Wang, C., Y. Xie, H. Huang, P. Liu (2021), 'A review of surrogate safety measures and their applications in connected and automated vehicles safety modeling', Accident Analysis & Prevention, 157, 106157. DOI: https://doi.org/10.1016/j.aap.2021.106157

Zaki, M. H., T. Sayed (2013), 'A framework for automated road-users classification using movement trajectories', Transportation Research Part C: Emerging Technologies, 33, 50–73. DOI: https://doi.org/10.1016/j.trc.2013.04.007

Published

2024-09-20

How to Cite

Hossein Sabbaghian, M., Llopis-Castelló, D., & García, A. (2024). Assessing micromobility safety on horizontal curves of bike lanes: a video motion analysis methodology. Traffic Safety Research, 7, e000057. https://doi.org/10.55329/mmvw5208

Funding data