The maximum allowable handlebar disturbance: an indicator for the ex-ante evaluation of cycling fall prevention interventions
DOI:
https://doi.org/10.55329/posh4189Keywords:
cycling safety, ex-ante evaluation, fall-preventionAbstract
Falls due to disturbances are a common cause of serious cycling injuries, yet evaluation approaches to systematically evaluate interventions aimed at improving balance recovery are lacking. Current ex-post evaluations are hindered by sparse crash data, and existing ex-ante approaches often lack generalizability or rely on surrogate measures that are not validated against fall risk. This study introduces the Maximum Allowable Handlebar Disturbance (MAHD), a novel performance indicator that quantifies the largest handlebar disturbance a cyclist can recover from without falling. The MAHD captures the cyclist's resilience to disturbances and provides a direct, interpretable measure of intervention effectiveness. We propose two methods for determining MAHD: (1) controlled treadmill experiments with induced handlebar disturbances and safe fall conditions and (2) simulations using bicycle dynamics and cyclist control models. Together, these methods allow quantitative ex-ante evaluation and systematic comparison of interventions targeting cyclist control, bicycle design, and infrastructure features such as curbs and road shoulders. With further validation, the MAHD offers practical value for researchers, engineers, and policymakers seeking to design safer bicycles, training programs, and road environments and improve evidencebased resource allocation. In the future, this could reduce fall-related cycling injuries.
Downloads
References
Alizadehsaravi, L., & Moore, J. K. (2023). Bicycle balance assist system reduces roll and steering motion for young and older bicyclists during real-life safety challenges. PeerJ, 11, e16206. DOI: https://doi.org/10.7717/peerj.16206
Basu-Mandal, P., Chatterjee, A., & Papadopoulos, J. M. (2007). Hands-free circular motions of a benchmark bicycle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084), 1983-2003. DOI: https://doi.org/10.1098/rspa.2007.1849
Bruijn, S. M., Meijer, O. G., Beek, P. J., & van Dieen, J. H. (2013). Assessing the stability of human locomotion: A review of current measures. Journal of the Royal Society Interface, 10(83), 20120999. DOI: https://doi.org/10.1098/rsif.2012.0999
Bulsink, V. E., Kiewiet, H., van de Belt, D., Bonnema, G. M., & Koopman, B. (2016). Cycling strategies of young and older cyclists. Human Movement Science, 46 184-195. DOI: https://doi.org/10.1016/j.humov.2016.01.005
Dell’Orto, G., Mastinu, G., Happee, R., & Moore, J. K. (2024). Measurement of the lateral characteristics and identification of the magic formula parameters of city and cargo bicycle tyres. Vehicle System Dynamics, 1-25. DOI: https://doi.org/10.1080/00423114.2024.2338143
Dialynas, G., Christoforidis, C., Happee, R., & Schwab, A. L. (2023). Rider control identification in cycling taking into account steering torque feedback and sensory delays. Vehicle System Dynamics, 61(1), 200-224. DOI: https://doi.org/10.1080/00423114.2022.2048865
Doll, R. J., Buitenweg, J. R., Meijer, H. G. E., & Veltink, P. H. (2014). Tracking of nociceptive thresholds using adaptive psychophysical methods. Behavior Research Methods, 46(1), 55-66. DOI: https://doi.org/10.3758/s13428-013-0368-4
Elvik, R. (2001). Area-wide urban traffic calming schemes: A meta-analysis of safety effects. Accident Analysis & Prevention, 33(3), 327-336. DOI: https://doi.org/10.1016/S0001-4575(00)00046-4
(2023). Facts and figures cyclists. European Road Observatory, Brussels: Directorate General for Transport.
Gerards, M. H. G., McCrum, C., Mansfield, A., & Meijer, K. (2017). Perturbation-based balance training for falls reduction among older adults: Current evidence and implications for clinical practice. Geriatrics & Gerontology International, 17(12), 2294-2303. DOI: https://doi.org/10.1111/ggi.13082
Hoye, A. (2018). Recommend or mandate? A systematic review and meta-analysis of the effects of mandatory bicycle helmet legislation. Accident Analysis & Prevention, 120, 239-249. DOI: https://doi.org/10.1016/j.aap.2018.08.001
Keppner, V., Krumpoch, S., Kob, R., Rappl, A., Sieber, C. C., Freiberger, E., & Siebentritt, H. M. (2023). Safer cycling in older age (SiFAr): Effects of a multi-component cycle training. A randomized controlled trial. BMC Geriatrics, 23(1), 131. DOI: https://doi.org/10.1186/s12877-023-03816-2
Kooijman, J. D. G., Meijaard, J. P., Papadopoulos, J. M., Ruina, A., & Schwab, A. L. (2011). A bicycle can be self-stable without gyroscopic or caster effects. Science, 332(6027), 339-342. DOI: https://doi.org/10.1126/science.1201959
Marquis, B., & Greif, R. (2011). Application of Nadal limit for the prediction of wheel climb derailment. 54594 Pueblo, USA, 273-280. DOI: https://doi.org/10.1115/JRC2011-56064
McCrum, C., Bhatt, T. S., Gerards, M. H. G., Karamanidis, K., Rogers, M. W., Lord, S. R., & Okubo, Y. (2022). Perturbation-based balance training: Principles, mechanisms and implementation in clinical practice. Frontiers in Sports and Active Living, 4 1015394. DOI: https://doi.org/10.3389/fspor.2022.1015394
McCrum, C., Gerards, M. H., Karamanidis, K., Zijlstra, W., & Meijer, K. (2017). A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. European Review of Aging and Physical Activity, 14(1), 3. DOI: https://doi.org/10.1186/s11556-017-0173-7
Meijaard, J. P., Papadopoulos, J. M., Ruina, A., & Schwab, A. L. (2007). Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2084), 1955-1982. DOI: https://doi.org/10.1098/rspa.2007.1857
Moore, J. K. (2012). Human control of a bicycle, Davis, USA: University of California. PhD thesis.
Pijnappels, M., van der Burg, J. C. E., Reeves, N. D., & van Dieen, J. H. (2008). Identification of elderly fallers by muscle strength measures. European Journal of Applied Physiology, 102 585-592. DOI: https://doi.org/10.1007/s00421-007-0613-6
Reijne, M. M., van der Meulen, F. H., van der Helm, F. C., & Schwab, A. L. (2025). A model based on cyclist fall experiments which predicts the maximum allowable handlebar disturbance from which a cyclist can recover balance. Accident Analysis & Prevention, 221 108159. DOI: https://doi.org/10.1016/j.aap.2025.108159
Rieger, M. M., Papegaaij, S., Steenbrink, F., van Dieen, J. H., & Pijnappels, M. (2024). Effects of perturbation-based treadmill training on balance performance, daily life gait, and falls in older adults: React randomized controlled trial. Physical Therapy, 104(1), pzad136. DOI: https://doi.org/10.1093/ptj/pzad136
Schepers, P., Theuwissen, E., Velasco, P. N., Niaki, M. N., van Boggelen, O., Daamen, W., & Hagenzieker, M. (2023). The relationship between cycle track width and the lateral position of cyclists, and implications for the required cycle track width. Journal of Safety Research, 87 38-53. DOI: https://doi.org/10.1016/j.jsr.2023.07.011
Schwab, A. L., de Lange, P. D. L., Happee, R., & Moore, J. K. (2013). Rider control identification in bicycling using lateral force perturbation tests. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 227(4), 390-406. DOI: https://doi.org/10.1177/1464419313492317
Schwab, A. L., & Meijaard, J. P. (2013). A review on bicycle dynamics and rider control. Vehicle System Dynamics, 51(7), 1059-1090. DOI: https://doi.org/10.1080/00423114.2013.793365
Schwab, A. L., Meijaard, J. P., & Kooijman, J. D. G. (2012). Lateral dynamics of a bicycle with a passive rider model: Stability and controllability. Vehicle System Dynamics, 50(8), 1209-1224. DOI: https://doi.org/10.1080/00423114.2011.610898
Sporrel, B., Stuiver, A., & De Waard, D. (2023). On the use of bicycle simulators. Proceedings of the Human Factors and Ergonomics Society Europe.
Sturnieks, D. L., Menant, J., Delbaere, K., Vanrenterghem, J., Rogers, M. W., Fitzpatrick, R. C., & Lord, S. R. (2013). Force-controlled balance perturbations associated with falls in older people: a prospective cohort study. PloS One, 8(8), e70981. DOI: https://doi.org/10.1371/journal.pone.0070981
Tan, G. R., Raitor, M., & Collins, S. H. (2020). Bump’em: An open-source, bump-emulation system for studying human balance and gait. Paris, France, DOI: https://doi.org/10.1109/ICRA40945.2020.9197105
Thomas, B., & DeRobertis, M. (2013). The safety of urban cycle tracks: A review of the literature. Accident Analysis & Prevention, 52 219-227. DOI: https://doi.org/10.1016/j.aap.2012.12.017
Utriainen, R., O’Hern, S., & Pollanen, M. (2023). Review on single-bicycle crashes in the recent scientific literature. Transport Reviews, 43(2), 159-177. DOI: https://doi.org/10.1080/01441647.2022.2055674
Westerhuis, F., Fuermaier, A. B. M., Brookhuis, K. A., & de Waard, D. (2020). Cycling on the edge: The effects of edge lines, slanted kerbstones, shoulder, and edge strips on cycling behaviour of cyclists older than 50 years. Ergonomics, 63(6), 769-786. DOI: https://doi.org/10.1080/00140139.2020.1755058
World Health Organization (2023). Cyclist safety: An information resource for decision-makers and practitioners. https://iris.who.int/bitstream/handle/10665/336393/9789240013698-eng.pdf
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Marco M. Reijne, Frans C. T. van der Helm, Arend L. Schwab

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Grant numbers P16-28 CAS



