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Multiple object tracking (MOT) systems enable the recording of traffic situations and
themovements of road users in high detail. These data form the basis for safety-related
analyses such as surrogate safety assessment (SSA), which often involves detecting,
quantifying, and analysing conflict situations. Due to the rarity of actual conflicts
even occasional data errors can significantly affect SSA outcomes. Consequently, high-
quality data are essential. However, a gap remains between MOT and SSA research,
particularly regarding the impact of data quality on the reliability of SSA results.
This study addresses that gap by proposing a framework that explicitly accounts
for the effects of data quality to ensure reliable SSA outcomes. Since it treats the
data-generating MOT system as a black box, the framework can also be applied by
practitioners using historical datasets or in cases of restricted access to the MOT
system. Using the surrogate safety measures (SSMs) time-to-collision (TTC) and post-
encroachment time (PET), we illustrate how data inaccuracies affect conflict detection
and show how the proposed framework can reveal critical data limitations. We also
demonstrate its ability to identify the need for data correction methods and to analyse
the effects of such methods on SSA outcomes. Finally, our findings underline the
importance of scenario-specific data evaluation for ensuring reliable SSA results and
suggest that robustness against data inaccuracies should be considered a key criterion
when selecting SSMs.

1. Introduction

1.1 Motivation

Roadside multiple object tracking (MOT)
systems have proven capable of capturing
the movements of all road users in great
detail. These data are used in various
traffic research applications. For example,
MOT systems can enhance infrastructure-
to-vehicle communication by providing
extended perception or real-time warnings
about dangerous situations (Jandial et al.,
2020; Shi et al., 2022; Vignarca et al., 2023).
Furthermore, the large volume of high-
resolution trajectory data allows researchers
to conduct behavioural and safety analyses,
such as surrogate safety assessment (SSA). SSA

involves the use of surrogate safety measures
(SSMs) to estimate conflict risks based on
observed movements. Given the rarity
and underreporting of actual crashes, SSA
provides a useful alternative or complement to
accident-based analysis (Johnsson et al., 2018).

Multiple factors contribute to the reliability
of SSA, including the suitability of the selected
SSMs for capturing the critical characteristics
of conflict situations, as well as the validity
of their relationship with actual crash
occurrences. Most importantly, however, the
reliability of SSA depends on the quality of
the underlying data: Unless the input data
meet the requirements of the chosen SSMs,
even a well-designed assessment may yield
misleading results.
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Although MOT is closely linked to
traffic safety research through its practical
applications, Abdel-Aty et al. (2023) note
that video processing (or computer vision,
in a sensor-agnostic sense) and traffic safety
modelling remain largely separate research
domains. Their review paper aims to provide
guidance across both fields, focusing on
computer vision techniques and surrogate
traffic safety indicators. Yet, one critical
question remains broadly underexplored
across the combined literature of both fields:
How can practitioners and researchers
evaluate the suitability of MOT data for
specific SSA scenarios and determine whether
preprocessing or correction methods can
improve the reliability of results?

While MOT research prioritises algorithm
development and generic benchmarking,
traffic safety research is concerned with
application-specific data reliability. A
general validation of an MOT system does
not automatically translate to a specific
installation. Factors such as sensor placement,
mounting height, distance, or occlusion may
vary significantly, affecting data quality at
the site level. Even minor inaccuracies
in MOT data can significantly distort the
calculated values of SSMs and consequently
SSA outcomes, especially in dense traffic
situations. Due to the rarity of actual
conflicts, even occasional errors can have a
disproportionate effect. Therefore, scenario-
specific data validation is essential—especially
since different SSA approaches may prioritise
different aspects of data quality. This work
addresses precisely this gap by proposing
a framework for conducting reliable SSA
that includes application-specific data quality
evaluation.

1.2 Objectives

The main goals of this work are to highlight
the importance of assessing MOT data
quality in the context of SSA, to discuss the
related challenges, and to propose and test a
suitable process for ensuring the reliability
of SSA outcomes. In particular, we aim to
examine whether preprocessing or correction

methods can mitigate quality-related issues
and how their impact on SSA outcomes can be
systematically evaluated.

Since SSMs differ in how strongly they rely
onmotion attributes such as speed or heading,
their susceptibility to typical MOT artefacts
varies. Understanding these differences is
essential for determining which SSMs can be
applied reliably given the data quality of a
specific installation.

In many cases, the underlying MOT systems
are inaccessible to practitioners—especially
when working with existing or historical
datasets. For this reason, the proposed
process treats the MOT system as a black
box and relies solely on the data it produces.
It can therefore be applied to data from
any MOT system, regardless of the specific
sensor technology, processing algorithms, or
environmental conditions of the installation.
In its presented form, the process requires
information on object bounding boxes in
addition to object positions for visualisation.
Other requirements only originate from the
specific SSA approach to be evaluated, e.g.,
the existence of specific motion attributes
or the frequency of measurements. The
process assumes that data are produced by
a generally functioning MOT system, i.e., that
objects are detected and tracked correctly in
most cases. It is not applicable for evaluating
the overall performance of an MOT system,
such as its detection or tracking accuracy, but
rather serves as an extension for assessing
data quality with respect to a specific SSA
application. The process is designed as an
iterative procedure that enables the repeated
adaptation of data correction techniques and
their evaluation with respect to SSA outcomes.

Our work focuses on data from MOT
systems that are typically installed at specific
locations of interest. Arun et al. (2021) report
that approaches building on traffic conflicts
defined via the proximity of road users are
most appropriate for such facility-based SSAs.
Therefore, the proposed process is implicitly
designed for proximity-based SSMs and tested
accordingly.

Traffic Safety Research 2



Steinmaßl et al. (2025) A framework for reliable traffic surrogate safety assessment...

Specifically, this work provides answers to
the following research questions:

• Q1: How can practitioners effectively
evaluate MOT data quality for a specific
SSA scenario when the MOT system is
treated as a black box?

• Q2: How does the robustness
of proximity-based SSMs to MOT
data imperfections influence their
suitability for reliable SSA in real-world
applications?

• Q3: How can data correction methods
be systematically evaluated for
their effectiveness in improving SSA
reliability?

• Q4: Which types of data inaccuracies can
be effectively mitigated using existing
data correction techniques?

The core of this work is the proposed
process, explicitly addressing research
questions Q1 and Q3. Although not the
primary focus, research questions Q2 and
Q4 are addressed through insights derived
from applying this process to real-world data,
thereby extending our understanding of the
practical implications of data inaccuracies and
correction methods in SSA.

Section 2. summarises related work on
the reliability of SSA and on the evaluation
of MOT data quality. In Section 3., we
propose a process for reliably conducting SSA
based on MOT data while treating the data
generating system as a black box. Section 4.
reports on the experimental application of the
proposed process to a real-world dataset that
shows the need for application-specific quality
evaluation as well as the practicability and
usefulness of the process. Section 5. concludes
the work by summarising the results in
relation to the research questions outlined
above.

2. Related work

In the following discussion of related work,
we focus on two main topics. First, which
aspects contribute to the reliability of SSA
and how are they addressed in traffic safety

research. Second, how is the data quality
aspect addressed in the computer vision
and MOT research fields. For the former,
we mainly refer to three survey papers
(Johnsson et al., 2018; Arun et al., 2021; Abdel-
Aty et al., 2023), that already summarise
the comprehensive literature that addresses
various aspects of SSA.

2.1 Reliability of surrogate safety
assessment

Several aspects affect the reliability of SSA and
need to be considered in any application:

1. Choice of surrogate measures:
Various SSMs have been proposed in
the literature over several decades
designed to address very specific
settings or designed as universally
applicable measures (Johnsson et al.,
2018). Considerations on the suitability
of SSMs include differences in
road geometry—leading to different
causes and characteristics of conflicts,
differences in the conflict types—
especially longitudinal conflict risks in
car-following scenarios versus lateral
conflict risks in crossing or angled
situations, and differences in traffic
conditions (Abdel-Aty et al., 2023).
Moreover, different measures capture
different aspects of a situation. SSMs
based on evasive actions, such as
decelerating or swerving, will miss
critical situations in which road users
did not take any action. Zheng et al.
(2014) argue that many crashes happen
without any evasive action. Conversely,
outcome-focusedmeasures, such as some
proximity-based ones, might under-
report the criticality of a situation
because strong evasive actions reduce
the criticality of the outcome but are
not considered by themeasure (Johnsson
et al., 2018).
Johnsson et al. (2018) state that while
various indicators capture different
dimensions of traffic risk, no single
measure can capture all relevant aspects.
Consequently, the choice of a suitable
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SSM or combination of measures needs
to depend on the concrete scenario and
objective of the analysis. If the wrong
characteristics of traffic situations are
analysed because the wrong measures
have been selected, SSA outcomes might
not be reliable.

Previous research such as Lu et al. (2021)
has also investigated the robustness of
various SSMs against data imperfections.
To the best of our knowledge, however,
robustness is usually not considered as a
selection criterion for SSMs.

2. Threshold selection:

While SSMs usually operate on a
continuous scale, practical applications
often require a binary classification of
situations as either safe or critical. The
choice of thresholds will impact the
reliability of SSA outcomes. Thresholds
vary widely across studies—even for the
same SSM in similar scenarios (Johnsson
et al., 2018). This has led to efforts
to empirically determine appropriate
threshold values. Various approaches
have been proposed, as summarised in
the review paper by Arun et al. (2021).
However, the authorswarn about relying
on any kind of correlation with historical
crash data, given concerns over the
quality of such data. Based on reviewed
literature, Abdel-Aty et al. (2023) provide
a table of preferred thresholds for
seven common SSMs distinguishing
intersection and freeway scenarios.

3. Validation of SSMs as risk predictors:

As stated above, different SSMs address
different characteristics of traffic
situations and road user interactions.
Even though these measures per se
can provide valuable insights, their
ultimate purpose is to serve as surrogates
for actual risk. Here, Johnsson et al.
(2018) distinguish between crash risk
and injury risk, leading to an additional
aspect of SSA: Should the objective be
to estimate the risk of any type of crash
regardless of severity or to estimate the
risk of (severe) injury? In either case,

the validity of SSMs as risk predictors
contributes to the reliability of SSA
outcomes.

A large body of work attempts to
validate SSMs by comparing them to
crash statistics or near-crash datasets.
Arun et al. (2021) categorise validation
strategies into three groups:

• correlation with observed crash
frequency,

• variance analysis of observed and
estimated crashes, and

• comparisons using crashmodification
factors

Johnsson et al. (2021) propose a relative
validation approach that avoids the need
for crash data. Sengupta et al. (2024)
use statistical and machine learning
models to predict expert-confirmed
conflicts based on post-encroachment
time (PET), road user behaviour, and
environmental variables. This model-
based approach offers an alternative
approach to SSM validation: If such a
model demonstrates strong predictive
power, the combination of variables can
be seen as a crash surrogate, subject to
the theoretical relationship between the
subjective expert-definition of conflicts
and crashes. Nikolaou et al. (2023)
highlight that different types of road
users should be distinguished when
validating the relationship between SSMs
and crashes.

4. Subjectivity in traditional methods

Johnsson et al. (2018) state that it
has historically been common to use
subjective components and trained
observers in SSA and that these pose
the most apparent reliability concern.
Additionally, such approaches cannot be
adopted in automated systems. As this
work focuses on MOT-based SSA, we will
not further elaborate on the topic and
refer the interested readers to Johnsson
et al. (2018).

5. Quality of automated data collection
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MOT systems, in contrast, enable
automated and objective facility-
based observation of traffic dynamics.
However, the effects of data quality on
the reliability of SSA outcomes are rarely
discussed in the literature.
Abdel-Aty et al. (2023) discuss general
issues in video-based trajectory data
generation and suggest to carefully
examine trajectory data prior to SSM
calculation. However, their reviewpaper
does not address concrete effects of
data errors on SSA outcomes or which
methods could be used to examine the
quality of a given data set with respect to
a particular SSA approach.
Rath et al. (2024) compare the detection
quality of LiDAR-based and video-based
MOT systems in the context of safety
assessment involving vulnerable road
users (VRUs) but do not actually compare
the calculated SSMs between the sensor
types. Hence, the effects of data quality
on SSA remain unclear.
Moreover, several works exist that
calculate SSMs from MOT trajectories
in practical applications but do not
specifically evaluate the quality of the
data used with respect to the particular
application or do not report on it
(Puscar et al., 2017; Xing et al., 2019;
Darzian Rostami et al., 2020; Mansell
et al., 2024; Huang & Chen, 2025).
A lack of attention on the data quality
topic in the review papers on SSA and
in our own literature search suggest
that evaluating the quality of an MOT
trajectory dataset in the context of a
specific SSA approach poses a major
research gap, even though application-
specific data validation is important,
as motivated in Section 1.1. It seems
that traffic safety researchers often
assume that the available data are of
sufficient quality for SSA, or that future
improvements in sensing will resolve
existing issues. Hence, the research focus
of SSA remains on the methodological
part rather than on the necessary data.
Computer vision researchers, in turn,

focus on the general quality of MOT
systems, rather than evaluating whether
the output trajectories are suitable for
a specific application such as SSA (see
Section 2.2).

Following these insights from related work
on SSA reliability, our work focuses on how a
reliable SSA can be conducted given an MOT
dataset and a scenario of interest. We consider
the selection of suitable SSMs and thresholds,
and especially the validation of data quality.

2.2 MOT data and quality

The literature on MOT data quality can be
separated into two main strands. First, how
are MOT algorithms and systems evaluated
and benchmarked in general, and second,
how are particular installations and datasets
evaluated in practice.

The evaluation of MOT algorithms is
typically conducted by comparing the objects
detected and tracked in a sequence of
frames (images or point clouds) to a ground
truth (Jiménez-Bravo et al., 2022). Various
metrics exist to measure accuracy, precision,
completeness and robustness of object
detection and tracking (Luo et al., 2021),
but these generic metrics do not necessarily
reflect the specific data quality requirements
of SSA applications. They typically consider
the existence, location and size of bounding
boxes around objects or their centre points
and the stability of object identification along
a sequence. However, they often do not
consider speed, acceleration or heading angle
directly. The latter, however, might be
particularly relevant for the calculation of
SSMs. The nuScenes detection task benchmark
(nuScenes, 2025) is an example that does
include metrics on additional object attributes
including speed and heading angle.

The relevance of ground-truth-basedmetrics
and benchmarks for the practical use case
of ensuring reliable SSA is limited: On the
one hand, the concrete installation of an
MOT system for a specific SSA application
might be subject to challenging effects such
as occlusion or large sensor distances (Anuj
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& Krishna, 2017). Consequently, sufficient
data quality for SSA cannot be guaranteed
by previous benchmarking or validation of
the MOT system, but depends on the concrete
installation. On the other hand, validation
of the MOT system and the data quality of a
specific installation might not be practical due
to high overhead for ground-truth-labelling
objects. Moreover, raw frame data are often
not available in practice, particularly in the
case of historical or externally provided
datasets.

Some studies have attempted to evaluate
trajectory data quality while treating the
MOT system as a black box. For example,
Punzo et al. (2011) propose approaches based
on jerk analysis, platoon consistency, and
spectral characteristics—mainly in the context
of traffic flowmodelling. Thesemethods check
for physical plausibility rather than absolute
correctness. However, it remains unclear
whether these methods can sufficiently
evaluate data quality in the context of SSA.

Zhao et al. (2023) suggest using SSMs
such as stopping sight distance and PET to
detect abnormal interactions based on the
assumption that these anomalies are caused
by data errors. However, since their approach
may inadvertently flag actual conflicts as
anomalies, relying solely on their method
would not be sufficient in an SSA context—
where accurate conflict detection is the
primary goal, rather than solely an indicator of
data quality. Thus, additional analytical steps
are necessary to reliably differentiate between
genuine safety-critical events and data-related
artefacts.

To the best of our knowledge, no practical
method exists for validating the quality of
MOT trajectories for a specific SSA approach.
This paper therefore proposes a practical,
trajectory-based approach for assessing
whether the quality of MOT data is sufficient
for use in SSA—while treating the generating
MOT system as a black box. It is not
intended as a replacement for general system
validation, but rather as a complementary,
application-driven evaluation method.

Before concluding this section, we want to
note that data artefacts could be minimised
by deploying only high-end systems and
carefully calibrating installations in principle.
Yet this is not always feasible—especially
when analysing historical data or working
under budget constraints. If suitable methods
for identifying and mitigating SSA-relevant
data errors were available, even less precise
datasets could still be usable.

3. Method

3.1 Overview

Figure 1 shows the main steps of our method
and how they are connected. We assume
a safety-relevant scenario of interest and
data from MOT to be given. We define a
”scenario” narrowly as a specific type of
interaction between road users at a given part
of the road infrastructure. For example, we
would distinguish car-following interactions
and lane-merging interactions as two distinct
scenarios, even if they occur on the same
highway section. This is because different
types of interactions or different parts of the
road infrastructure might require different
SSMs and, even if the same SSMs are suitable,
wewant to evaluate the reliability of outcomes
separately.

First, suitable SSMs must be selected that
capture safety-relevant aspects of traffic
situations relevant in the scenario. A large
body of literature is available discussing
various measures, which aspects they are able
to capture, and in which environments they
can be applied.

Second, data preprocessing steps (see
Section 3.2) might be necessary, depending
on both the data themselves and the selected
SSMs. This includes the handling of erroneous
data as well as deriving attributes necessary
for the calculation of the chosen SSMs.
Moreover, the selection of scenario-relevant
trajectories is a necessary preprocessing step.
Since MOT systems capture all objects in a
scene, it is essential to identify and extract
only those that are relevant to the scenario.
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Figure 1. Schematic visualisation of the proposed process for ensuring reliable SSA outcomes

After preprocessing, SSMs can be
calculated and their histograms analysed (see
Section 3.3), before defining conflict situations
based on the SSMs. Conflict definition should
consider the large body of literature from
previous works to utilise the knowledge they
provide. However, the distribution of SSM
values in the particular scenario should also
be considered to address potential application-
specific effects that could emerge from subtle
differences between the particular scenario
and the scenarios in the literature. Note that
conflicts can be defined based on a single SSM,
or a composite definition involving multiple
SSMs can be applied.

The final step of the proposed method is
to analyse the detected conflicts with respect
to data quality issues that may affect the
reliability of the outcomes. We propose a
visual-analytics-based approach for this task
(see Section 3.4). Each iteration of the process
ends with one of the following outcomes:

1. Results indicate that data quality does
not affect conflict detection. Data quality
is satisfactory and SSA outcomes are
reliable.

2. Results indicate the need for improved
data preprocessing to address data
quality issues. Then a concept has to
be developed and changes to the data
preprocessing step have to be made
accordingly, before starting another
iteration of the analysis process.

3. Results indicate that major data quality
issues exist to the extent that correction
methods are unlikely to raise the
reliability of results to a satisfactory
level. The dataset is not suitable
to reliably conduct SSA in the given
scenario.

In the following sections, we will elaborate
the key steps of the proposed method in more
detail.
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3.2 Application specific preprocessing

Most preprocessing steps depend on
the requirements of selected SSMs, the
characteristics of MOT data, and potentially
the findings from previous iterations of
the proposed process. However, there is
one important general task to be discussed:
selecting scenario relevant data from the
whole scene that anMOT system has captured.
Particularly at intersections, trajectories of
vehicles and road users that are not involved
in the targeted interaction scenario may
frequently intersect or overlap spatially with
relevant trajectories, which complicates their
separation. Additionally, incomplete or
fragmented trajectories add another layer of
difficulty to this task. We will discuss two
approaches for isolating scenario-relevant
trajectories: geo-fencing and clustering.

Using geo-fencing, geographic areas can
be defined that relevant trajectories will
intersect, i.e. some points of the trajectories
are contained within the geo-fences. To isolate
left-turning vehicles at an intersection, for
example, one area at the entrance to the
intersection and one area at the exit of the
intersection will be sufficient for selecting
the relevant trajectories. Depending on the
scenario, more complex combinations of geo-
fences might be required to isolate relevant
trajectories correctly. However, a significant
drawback of geo-fencing is that it relies strictly
on spatial intersectionswith predefined zones.
Consequently, incomplete trajectories—where
an object is temporarily not tracked or is
missed due to occlusion—may not fulfil the
intersection criteria with all geo-fenced zones,
resulting in their unintended exclusion from
the analysis. This unintended exclusion may
mask important tracking errors or biases that
would otherwise be relevant for assessing data
quality.

For clustering-based selection, trajectories
are grouped together based on their spatial
similarity, forming clusters that represent
common movement patterns. A suitable
distance metric to quantify trajectory
similarity is theDynamic TimeWarping (DTW)
distance (Berndt & Clifford, 1994), which

accounts for variations in speed and timing
along the trajectories. Similarity is therefore
based on the shape of the trajectory paths
rather than speed profiles. As a clustering
mechanism, we suggest Affinity Propagation
(Frey & Dueck, 2007), which identifies
exemplars among the trajectories and forms
clusters of similar trajectories around these
exemplars without requiring the number of
clusters to be specified in advance. This is
particularly advantageous when the number
of distinct movement patterns is unknown
beforehand. Cluster exemplar trajectories can
then be visualised on amap of the intersection
to select the clusters—and consequently the
trajectories—relevant for the scenario of
interest, i.e., those clusters that represent
trajectories corresponding to the targeted
interaction scenario. This clustering approach
therefore mitigates the risk of excluding
incomplete trajectories because trajectories
are clustered based on spatial similarity
instead of strict spatial intersections with
predefined areas. Even partial trajectories
may still be correctly associated with their
intended cluster or may form their own
distinct cluster if incomplete trajectories occur
frequently, making them easier to identify and
analyse separately. The clustering approach,
however, is computationally much more
expensive than geo-fencing.

Given these distinct strengths and
limitations of geo-fencing and clustering, we
recommend a preliminary comparison of both
approaches using a representative trajectory
subset. If the results of both methods align
closely, geo-fencing can be employed due to
its simplicity and computational efficiency. If
results differ significantly, clustering would
provide a more robust, albeit computationally
more intensive, alternative.

3.3 SSM histogram analysis

The motivation for analysing frequency
histograms of calculated SSM values is two-
fold: (i) to detect potential data quality issues,
and (ii) to support the definition of conflict
thresholds.

Traffic Safety Research 8



Steinmaßl et al. (2025) A framework for reliable traffic surrogate safety assessment...

Investigating the distribution of SSM values
represents a straightforward initial step to
assess data quality specifically within the SSA
context. Although raw trajectory data alone
may not immediately reveal data artefacts,
these can become apparent through unusual
histogram shapes or an unusually high
frequency of extremely low SSM values. Such
initial screening is highly practical because
it requires minimal analytical effort and
quickly highlights potential issues needing
further investigation. However, reliably
interpreting these histograms remains
challenging because the expected or natural
shape of the distributions of a particular SSM
in a particular scenario may not have been
sufficiently discussed in existing literature.
Moreover, critical SSM values are the analysis
target in the context of SSA. Hence, using them
as a quality indicator could be misleading
in some cases. Therefore, conclusions need
to be drawn cautiously and backed up by
subsequent analysis.

In addition to screening for data quality,
investigating the distribution of SSM values
can inform the subsequent task of defining
suitable thresholds for conflict detection.
In literature, various SSM thresholds are
suggested, often spanning broad ranges even
within similar contexts (Arun et al., 2021).
Analysing histograms of calculated SSMs for
the specific application scenario provides
valuable empirical context for threshold
selection, complementing existing literature
recommendations. For instance, clear peaks
or distinct troughs separating different
severity levels in the histogram may guide an
empirically informed threshold choice (Yang
et al., 2018). Yet, given potential uncertainties
regarding typical distribution shapes for a
particular scenario, such empirical thresholds
should be interpreted carefully. Thus,
the histogram analysis supports threshold
definition, but should not be used as the sole
basis for threshold selection.

3.4 Visual-analytics-based analysis of
conflicts

The main objective of this step is to assess the
reliability of SSA with respect to data quality.
Theproposed approach is based exclusively on
MOT data, requiring no additional knowledge
about the MOT system itself. This enables
its application to historical or externally
provided datasets, for which the internal
structure or parameters of the data-generating
system are unknown—that is, the system is
treated as a black box. It is important to
note that this step does not assess whether
a specific SSM is appropriate for capturing
traffic conflict risk in general. At this step, we
assume that a suitable SSM has already been
selected. Instead, the focus lies on evaluating
whether the quality of the (preprocessed) data
is sufficient to calculate the selected SSMs
reliably.

In the absence of ground truth, the
method relies on visual inspection and expert
judgement. This approach builds on the
principle that visual representations can
support analytical reasoning by exposing
patterns, inconsistencies, and errors in a way
that leverages human perceptual strengths.
The core idea is to evaluate a representative
subset of detected conflict situations and
determine how many of them are false
positives caused by data errors. Based on this,
the data-induced bias in SSA outcomes can be
estimated.

The evaluation process consists of the
following steps:

1. Select a representative subset of detected
conflicts.

2. Visualise the selected conflict situations,
including all attributes relevant to SSM
computation.

3. Manually inspect each situation to
determine whether a critical SSM value
was due to a data error (false positive),
and, if so, document the error type.

4. Calculate the false discovery rate (FDR),
i.e., the proportion of false positives
among all detected conflicts.
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If the FDR is acceptably low, the dataset
may be considered sufficiently reliable for
SSA using the selected SSM. If not, either the
data must be improved (e.g. preprocessing
and correction methods), or the dataset is not
suited for SSA.

In the following sections, we elaborate on
the key concepts that underpin this step.

3.4.1 Representative subset

When working with large datasets, a manual
evaluation of all situations is generally
impractical. Therefore, a subset of the data
must be selected for inspection. This subset
should be representative, such that the results
of the manual evaluation can be generalised
to the entire dataset.

A key consideration is the temporal
distribution of traffic conditions. For
example, traffic density and composition vary
throughout the day, which may affect both the
occurrence of conflicts and the likelihood of
data artefacts. To account for this variability,
one suitable sampling strategy is to select short
time intervals distributed evenly across the
day—for instance, the first tenminutes of each
hour. This ensures that the selected subset
captures a representative range of traffic
conditions and sensor states, while keeping
the volume of data at a manageable level for
manual analysis.

3.4.2 Selection of relevant situations

Amajor challenge in SSA reliability evaluation
is the rarity of traffic conflicts. Without
prior filtering, manual review would require
analysing a vast number of situations—the
majority of which are non-critical. To address
this, we propose focusing the evaluation on
those situations that fulfil the previously
defined conflict criteria. In other words, we
evaluate the positives: situations for which
SSMs indicate a conflict. This strategy enables
us to assess howmany of the detected conflicts
are in fact false positives caused by data
artefacts. It enables the calculation of the FDR,
which can serve as an indicator of SSA input
data reliability.

However, this approach has an important
limitation: It does not account for false
negatives, i.e., actual conflicts that remain
undetected due to data errors. We
acknowledge this limitation and argue that
in many real-world cases, false negatives are
typically less impactful than false positives.
To illustrate the structural effect of rare-
event detection under uncertainty, consider
a hypothetical case: Assume the probability
of an actual conflict between any two objects
is 0.01, and the probability of a severe data
error that alters the conflict classification is
also 0.01. Then:

• The probability of a false positive =
0.99 × 0.01 = 0.0099

• The probability of a false negative =
0.01 × 0.01 = 0.0001

In this example, false positives are 99
times more likely than false negatives, and
their frequency is almost as high as that
of true positives. The example assumes
symmetric error probabilities and is not based
on empirical data. Rather, it is intended
to illustrate a general principle: When the
event of interest is rare, even modest error
rates can lead to a disproportionately high
number of false positives. While we do
not claim that false positives are always
more frequent than false negatives in real-
world settings, they are more accessible for
systematic evaluation in the absence of ground
truth. False positives manifest as observable
artefacts, whereas false negatives remain
inherently undetectable unless confirmed by
external data.

False negative conflicts can occur if the MOT
system fails to detect or track objects involved
in a conflict, leading to their absence in the
dataset. Therefore, general functionality of the
MOT system is a prerequisite for applying the
proposed process. Moreover, false negatives
may arise if data inaccuracies cause SSM
values to be overestimated, resulting in
actual conflicts being classified as non-critical
situations. Depending on the SSM used,
such inaccuracies may include overestimated
distances or imprecise relative speeds
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between objects. Most such inaccuracies in
relevant attributes are caused by imprecise
object localisations, which in turn are
typically caused by imprecise bounding box
annotations due to sensor limitations or
occlusions.

We therefore focus our analysis on
quantifying false positives as a pragmatic and
analytically feasible proxy for assessing the
reliability of SSA results.

3.4.3 Visualisation and manual
evaluation

The proposed process relies on visual
inspection of selected conflict situations in
order to detect substantial data errors. To
make this practical and reliable, all attributes
relevant to the SSM, such as object position,
size, orientation, and speed, must be shown in
the visualisation. We propose to reconstruct
each object’s bounding box from its reported
position, heading angle, length, and width.
By visualising all objects per time step and
reviewing sequences of frames in temporal
order, we can reconstruct how theMOT system
perceived the situation. This may reveal
anomalies that are not easily identifiable
through numerical inspection. Tools such
as QGIS’s Temporal Controller allow for
automated or step-wise visual playback of
time-referenced geospatial data. Additional
attributes (e.g. speed) can be displayed as text
labels per object and timestamp.

Figure 2 shows an example of such a
visualisation. Vehicles A and B approach from
the top-right and have a longitudinal collision
risk while waiting to turn left. Vehicles C
and D travel from the bottom-left to the top-
right while C lets D merge. According to the
perception of the MOT system, they collide.
The speed of the objects (in m/s) is shown in
text labels. A map of the intersection with
lane-type semantics is used as background,
depicting lanes for regular traffic in blue, cycle
lanes in green, walkways in yellow, and bus
lanes in pink.

To ensure reproducibility and objectivity,
we define the following criteria to determine

whether an identified conflict is a true positive
or an artefact caused by data inaccuracies:

• Position plausibility. Sudden
unrealistic jumps or inconsistent
positions of objects across consecutive
frames (e.g., objects appearing to
abruptly teleport).

• Speed plausibility. Physically
implausible acceleration or deceleration
between frames, such as sudden drastic
changes in speed that exceed realistic
vehicle dynamics.

• Heading consistency. Sudden or
unexplained changes in the orientation
of objects, inconsistent with their
surrounding trajectory.

• Object dimension consistency. Clearly
incorrect bounding box dimensions or
significant changes in object size within
short time intervals.

• Tracking consistency. Frequent
disappearance and reappearance of
objects without plausible explanations,
suggesting fragmented tracking.

A conflict situation is classified as a
data error (i.e. a false positive) if one
or more of these criteria clearly indicate
unrealistic or physically impossible object
movements or characteristics. Situations
are marked as suspicious if data anomalies
are subtle, ambiguous, or near the threshold
of plausibility, making it difficult to draw
a definitive conclusion without further
information. This enables a more nuanced
diagnosis of borderline cases and supports
later detailed investigation and interpretation.
If none of these criteria indicate an issue,
the conflict is considered genuine from a
data quality perspective. It is important to
emphasise that the visual evaluation focuses
exclusively on assessing the plausibility of
the data and does not involve subjective
assessments of conflict severity or actual
collision risk. This distinction is critical: We
do not question the SSM or its threshold, but
rather whether the data quality undermines
its meaningfulness in that instance.
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Figure 2. Exemplary visualisation frame; A–D labels added for explanation

Visual inspection primarily requires clearly
defined attributes that can be systematically
evaluated, as listed above. These attributes
are explicitly visualised per timestamp,
enabling structured assessment. Nonetheless,
the evaluation additionally benefits from
the natural capability of human perception
to quickly recognise unusual patterns and
anomalies. Thus, while the predefined criteria
ensure objectivity and reproducibility, human
evaluators can still effectively identify subtle
data inconsistencies or novel error patterns
that may not fit neatly into the predefined
categories. Any such additional findings,
however, should be carefully documented and
explicitly justified to maintain transparency.

While the approach involves manual
judgement, it differs fundamentally from
traditional subjective conflict assessment
involving human observers. The goal is
not to evaluate the severity or risk of a

situation, but to determine whether the SSMs
are supported by the underlying motion
data. Because the evaluation is grounded
in observable attributes, such as position,
speed, and bounding box continuity, it
remains transparent and reproducible within
the scenario. This form of subjectivity is
deliberate and structured, and helps reveal
data artefacts that automated methods may
overlook.

4. Experiments and results

In this section, we report on the application
of the process proposed in to a real-world use
case. Its structure follows Figure 1.

4.1 Scenario and data

We analyse a signalised four-leg urban
intersection in Salzburg, Austria, focusing
on a permissive left-turn situation in which
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vehicles approach the intersection from the
north, turn left, and must yield to through
traffic coming from the south (see Figure 3).
Although signalised, this situation still poses
conflict potential since left-turning and
through-moving vehicles receive green signals
simultaneously. We conduct SSA for three
specific scenarios:

• lateral scenario (LAT): the interaction
between one left-turning road user and
one road user going straight potentially
has a lateral collision risk.

• straight-through following scenario
(STF): the interaction between two road
users going straight potentially has a
longitudinal collision risk.

• left-turn following scenario (LTF): the
interaction between two road users
turning left potentially has a longitudinal
collision risk.

Several roadside LiDAR sensors (HESAI
Pandar XT32), operated via the SensR
perception software, are installed at the
intersection to detect and track road
users. The resulting object information
is transmitted to a cloud-based processing
platform in near real time, where it is
assembled into point-trajectories—each point
of which contains additional object attributes.
Due to the real-time nature of the system,
attributes such as object class or bounding
box size may vary within a single trajectory.
The dataset used for this work covers one full
week, 05–11 August 2024.

Data from objects passing through the
central interaction zone of the intersection are
considered for subsequent analysis. We refer
to this area as the area of interest (AOI), which
can be seen in Figure 3. It is covered by three
LiDAR sensors from different angles, which
reduces occlusion effects and enables high-
quality motion data. The sensors are installed
at a height of approximately 4.5 m above the
ground at a 20° angle. Their position is shown
in Figure 3. Note that data quality could be
further enhanced by using more sensors and
integrating additional sensor modalities, such
as cameras. However, the main purpose of the

dataset within this study is to demonstrate the
proposed process for assessing SSA reliability
rather than to achieve the highest possible
data quality. The available data from the
AOI are especially suited to support analysis
of the lateral scenario, which is our primary
focus. Regarding longitudinal collision risks
at the intersection, the AOI does not include
the potentially relevant area in front of the
traffic signals where dilemma-zone-related
conflicts could occur. However, due to
yielding to oncoming traffic in the left-turn
following scenario and due to spillback effects
in the straight-through following scenario,
deceleration events occur within the AOI
posing a risk of longitudinal collisions that is
worth assessing.

4.2 SSM selection

Although various SSMs are suitable for our
scenarios, we select twowidely usedmeasures
for demonstrating the proposed methods: PET
and time to collision (TTC).

4.2.1 Time to collision

TTC describes the time remaining until
two objects would collide if they continued
on their current paths while maintaining
constant speed and heading (Hayward, 1971;
Van der Horst, 1990). A TTC value is defined
only when both objects are currently on
a collision course. In practice, evasive
actions usually prevent the collision, but
TTC reflects how close the interaction was to
becoming critical. TTC is particularly suited
in car-following scenarios with a longitudinal
collision risk. In turning scenarios, however,
the assumption of continued movement with
constant heading poses a limitation, as a
road user’s heading changes during a turning
manoeuvre (Mohamed & Saunier, 2018).
On the other hand, if a left-turning vehicle
performs a risky turning-manoeuvre in the
presence of oncoming traffic, the objects are
on a collision course and the TTC will reflect
this. While the PET is better suited for SSA in
the lateral scenario, we also calculate the TTC
and consider its limitations during analysis.
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Figure 3. Intersection layout and scenario

We calculate the TTC at every time step of
the dataset and use the minimum TTC value
observed during each interaction (TTCmin)
as the primary indicator of conflict severity.
The calculation takes into account the size of
the objects (corresponding to the bounding
boxes determined by the MOT system), the
relative headings and velocities of the objects,
and their positions on the 2D plane. The
calculation predicts the future positions of the
object assuming constant speed and heading
and constructs rectangles around them based
on each object’s width and length. If the future
rectangles of two objects intersect, the objects
are considered to be on a collision course, and
the TTC value is computed.

4.2.2 Post-encroachment time

PET is used for interactions where one road
user has to yield to another, especially in
intersection scenarios. It is defined as the time

between the first object leaving a potential
conflict area and the second object entering it
(Allen et al., 1978). In the permissive left-turn
scenario, left-turning vehicles are considered
to encroach, as they must yield to oncoming
through traffic. Through-moving vehicles, in
contrast, have the right ofway. For this reason,
PET is only calculated when the left-turning
object enters the conflict area first. This avoids
misclassifying safe situations as critical—such
as when the left-turning vehicle waits for the
through vehicle to fully pass and then turns
immediately afterwards.

Similar to TTC, we account for object
size in our calculations by constructing
rectangles around the object positions and we
dynamically determine the potential conflict
area geometrically when calculating the PET.
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4.3 Application specific preprocessing -
iteration 1

The dataset used in this study has already been
spatially filtered to cover the central part of the
intersection (see AOI in Figure 3) which has
multi-angle sensor coverage. In addition to
that, a representative temporal subset of the
data is necessary to ensure that subsequent
analysis steps remain feasible. To balance
representativeness and manageability, we
select the first ten minutes of each hour on
Thursday, 08 August 2024 as a subset, resulting
in a total of four hours of data, distributed
across one day.

We apply the followingminor preprocessing
steps during the first iteration of the proposed
process to form the full week baseline dataset,
from which the subset is derived afterwards.
About 0.2% of trajectories appear within
the AOI multiple times due to tracking
issues. Those are split into separate trajectory
segments and treated as distinct objects. We
also filter the dataset on the tracking status
attribute: If the MOT system is not able to
establish stable tracking of an object, data
often are erroneous, including short-lived
false positives and observations of severely
occluded objects. Unstable tracking occurs for
about 7% of the data.

Table 1 provides an overviewof the different
datasets referred to in the following sections,
including information about the number of
single data points, the number of unique
objects, and the number of co-occurring pairs
of objects referred to as situations.

Table 1. Overview of datasets and their extent

dataset points objects situations
full week baseline 9,023,571 240,224 601,253
full week geo‐fenced 2,725,013 53,610 76,586
subset baseline 221,763 6,030 15,245
subset geo‐fenced 75,601 1,339 2,224
subset clustered 78,137 1,424 2,443

From the baseline dataset, we select
those trajectories that are relevant to the
defined scenarios. To distinguish between
encroaching and priority road users in the
case of PET, it is also necessary to identify
the left-turning and the oncoming road

users. In Section 3.2 we discussed geo-
fencing and clustering for this purpose. Both
approaches are applied to the subset baseline
and compared. Although geo-fencing proved
computationally efficient and transparent, it
results in approximately 7% fewer left-turning
trajectories and 5% fewer through-traffic
trajectories than the clustering-based method.
In combination, 87 objects have not been
selected by geo-fencing but are included in
the clustering-based approach, while 2 objects
are only included by geo-fencing. Moreover,
the trajectories only included by clustering
tend to be shorter, with a median length of
18 points compared to 41 points for those
included by both methods. Using Cohen’s
kappa coefficient (Cohen, 1960) to describe the
alignment between both selection methods,
we obtain a kappa value of 0.96, indicating
almost perfect agreement.

Although the overall agreement is
high, the differences could still impact
the results of subsequent SSA if these
differences correspond to critical interactions.
Analoguous to the motivation outlined in
Section 1.1, even occasional errors can have
a disproportionate effect on SSA outcomes
due to the rarity of actual conflicts. Figure 4
compares the histograms of TTCmin and
PET values resulting from both selection
methods applied to the data subset. While
it is expected that slightly more relevant
situations are included by the clustering-based
approach due to the larger number of selected
objects, the number of situations with very
low TTCmin values in the two car-following
scenarios is disproportionately higher when
using clustering.

This result indicates that partially tracked
objects exist in the data. They are included
in the clustering-based selection but excluded
by geo-fencing due to not intersecting all
predefined zones. Since the effect is most
pronounced in the low TTCmin range, these
trajectory fragments must be very close to
other objects. Such effects can occur when
a single object is falsely perceived as two
separate objects by the MOT system. Usually,
the MOT system will recover at a later point in
time, resulting in a partially tracked trajectory
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Figure 4. Histograms of SSMs (bin width = 0.3 s) calculated on the dataset subset per scenario
comparing geo-fencing and clustering: (a) TTCmin for scenario left-turn following; (b) TTCmin for
scenario straight-through following; (c) TTCmin for scenario lateral; (d) PET for scenario lateral

fragment. In this sense, geo-fencing not only
selects scenario-relevant trajectories but can
also act as a filter for certain tracking errors
that impact SSA reliability in the present
context.

More generally, this highlights a fundamental
methodological challenge for SSA based on
MOT data: How can relevant trajectories
reliably be selected in areas where multiple
interaction scenarios spatially overlap?
The observed differences between the two
tested approaches indicate that trajectory
selection is a non-trivial task. Both types of
selection errors—excluding relevant data and
including irrelevant data—could potentially
influence SSA results. However, without
ground-truth information, our experiments
cannot definitively determine which selection
approach yields more accurate results
overall, representing a limitation we address

further in Section 5.. Since the observed
difference in the number of selected objects
is relatively small and geo-fencing seems
to have a beneficial filtering effect, we
apply geo-fencing to the full-week dataset
for the subsequent analyses, explicitly
acknowledging the potential tracking issue.

Figure 5 illustrates the trajectories of the
geo-fenced subset. The paths align well
with the background map, particularly for
northbound vehicles. Left-turning trajectories
show more variation, partly due to differing
vehicle types (e.g., buses vs. bicycles) and
yielding behaviour. In some areas, cycling
infrastructure causes eastbound paths to
diverge into cycle lanes or walkways. Overall,
the smoothness and consistency of most
trajectories indicate high positional accuracy
in the recorded data at first glance.
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Figure 5. The geo-fenced trajectories depicted as the set of recorded positions

4.4 SSM histogram analysis and conflict
definition

Enabled by geo-fencing, we can analyse
TTCmin values for each scenario as well
as the PET values in the lateral scenario.
Figure 6 shows the corresponding histograms
as black lines, based on data from the full week
resulting from preprocessing in iteration 1.
Most noticeably, all three scenarios show a
high number of situations in the leftmost bin,
which corresponds to TTCmin values below
0.3 s. Further investigation revealed that
in almost all of these situations (313 across
scenarios) the TTCmin is 0 s, meaning that two
objects have been assessed to have collided.
This is highly implausible for a single week of
data, especially since no real collisions were
reported during this period.

With respect to data quality, we can conclude
that in several cases, object bounding boxes, as
detected by the MOT system, overlap. At least

a majority of these cases are data errors that
affect the reliability of TTC-based SSA.

The PET in the lateral scenario shows
significantly less collisions than the TTCmin,
even though overlapping bounding boxes also
cause PET = 0 s in six situations. The reason
is that in any situation, the PET considers
only a limited area: the potential conflict
area that we construct around the point
where the paths of the two objects intersect.
The TTC, on the other hand, is calculated
at every timestamp for which both objects
are detected regardless of their position.
Therefore, collisions according to TTC also
occur when a through vehicle drives past
a waiting left-turning vehicle at a position
well away from the intersection point of their
paths.

While themode of the distribution in the left-
turn following and lateral scenario lies around
2 s, excluding the 0 s outlier, the frequency
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Figure 6. Histograms of SSMs (bin width = 0.3 s) calculated on the full week, geo-fenced dataset
per scenario comparing two iterations: (a) TTCmin for scenario left-turn following; (b) TTCmin
for scenario straight-through following; (c) TTCmin for scenario lateral; (d) PET for scenario
lateral

of values in the straight-through following

scenario rises continuously up to the 5 s cut-

off. For the PET, frequencies in the range 1.5–

5 s are very similar without a clear mode.

Threshold values for defining conflicts vary

widely in the literature. Studies reviewed

by Johnsson et al. (2018) report thresholds

for both TTC and PET in the range of 1–3 s.

The histograms in Figure 6 do not provide a

clear hint on which value to chose from that

range. Since our focus lies on data quality

assessment, we adopt a conservative threshold

of 3 s to define conflicts in all scenarios so as

not to miss any potential data artefacts in the

following analyses.

4.5 Visual-analytics-based analysis of
conflicts

Following the methodology proposed in
Section 3.4, we analyse conflict situations
from the geo-fenced subset to identify false
positives caused by data artefacts and thereby
assess the reliability of SSA with respect to the
given data. In total, 171 of 2,224 situations
meet the conflict definition above and were
investigated by means of visual evaluation.
Each situation was independently assessed by
two human observers with expertise in traffic
behaviour and MOT data interpretation. In
11 cases, assessments differed between the
two observers regarding the identification
of data errors. The inter-rater reliability
can also be described using Cohen’s kappa
coefficient (Cohen, 1960), which accounts
for the agreement occurring by chance. For
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the given visual evaluation, Cohen’s kappa
was found to be 0.82, indicating near perfect
agreement. The 11 cases of disagreementwere
resolved through discussion.

Table 2 provides an overview of the analysis
results per scenario. In total, 42 situations
are classified as false positives—i.e. the
reported conflict is not supported by plausible
motion patterns and appears to be caused
by erroneous data. This corresponds to an
FDR of about 25% of all evaluated situations.
However, differences between scenarios and
SSMs exist. Of the conflicts identified using
PET, only one (3%) is due to a data error,
whereas 14 (47%) of the detected conflicts
according to the TTCmin are caused by errors
in the lateral scenario. Additionally, the
number of detected conflicts according to
TTCmin (30) is lower than that based on
PET (34) in this scenario. Also, the TTCmin-
based and PET-based conflicts only share
seven situations, thus demonstrating that
different measures capture different aspects
of a situation. In both car-following scenarios,
the FDR of TTCmin-based conflicts is lower
than in the lateral scenario, but over 50% of
the situations are labelled as suspicious.

Table 2. Overview of visual-analytics-based
analysis of conflicts

scenario SSM error (FDR) suspicious clean N
LTF TTCmin 22 (29%) 39 (52%) 14 (19%) 75
STF TTCmin 5 (16%) 19 (59%) 8 (25%) 32
LAT TTCmin 14 (47%) 5 (17%) 11 (37%) *30
LAT PET 1 ( 3%) 4 (12%) 29 (85%) *34
TOTAL n/a 42 (25%) 67 (39%) 62 (36%) 171

*In the LAT scenario, seven TTCmin and PET situations refer to the
same pair of objects.

The subset contains nine detected collisions
(TTCmin = 0 s). All are confirmed to be false
positives due to data artefacts. While they
occur in every scenario, a majority of six cases
occurs in the left-turn following scenario.

The following attributes are most frequently
responsible for errors, withmultiple attributes
often occurring within the same situation:

• object position (21 cases)

• object heading (22)

• object speed (13)

• object size (12)

• and tracking inconsistency (7).

Figure 7 shows an example of an error due to
a tracking inconsistency that causes the false
detection of a collision. Panel (a) displays
the situation of a left-turn following scenario
type of interaction at the moment at which
the bottom object is about to leave the AOI.
Panel (b) displays the situations 400 ms later
where the same object is detected again and its
bounding box overlaps with another object’s
bounding box.

Figure 8 shows an example of a speed
attribute error. Panel (a) displays the situation
of two objects in the left-turn following
scenario approaching the center of the
intersection from the top right at a similar
speed. Panel (b) displays the situation 100 ms
later. The speed of the following object has
almost doubled, which leads to a low TTCmin
of 0.5 s and consequently to the false detection
of a conflict.

In addition to such clear errors, many
conflict situations show ambiguous data
quality and were labelled suspicious (see
Table 2). Suspicions were noted for two main
reasons: when the data described movement
at the edge of plausibility, i.e. when the
described movement was not typical but
also not impossible; or if (small) data errors
were clearly determined, but an impact of
errors on the SSM value was unlikely or
unclear. Even though the usefulness of such
ambiguous and subjective evaluation might
seem questionable at first, hypotheses about
the presence of small errors or inaccuracies
can be derived and knowledge of data quality
can be significantly extended. Compared
to visually assessing a random subset of
data, focusing on detected conflicts seems to
accumulate interesting cases.

The most prominent suspicion regards the
speed attribute. In 22.8% of the reviewed
situations, the reported speed appeared to lag
behind the actual deceleration observed in the
trajectory, especially in the left-turn following
scenario. However, based on the visual
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Figure 7. Example of a tracking error: (a) a left-turning object leaves the AOI; (b) the same object
is detected again 400 ms later

Figure 8. Example of a speed error: (a) two objects in the left-turn following scenario; (b) 100 ms
later the following object has a much higher speed

inspection of the situations, the presence of an
error could not be confirmed without doubt
unless there was a sudden change of speed,
as in Figure 8. It is difficult for human
observers to estimate the speed corresponding
to the movement of bounding boxes between
two frames and compare it to the speed
value provided by the system. Hence, these
situations were denoted as suspicious and
investigated in detail afterwards.

Figure 9 illustrates the speeds of two objects
in such a situation. The speed reported by the
MOT system changes smoothly over time, but
appears to react with a delay relative to the
speed directly calculated from the reported,
time-referenced positions of the trajectories

for comparison. This lag may result from
the MOT system operating in near real
time, where smoothing can only be applied
retrospectively. The system may prioritise
stability over responsiveness, leading to
delayed updates in motion attributes. In
contrast, the speed directly derived from
raw position data reacts immediately but
exhibits strong fluctuations and occasional
spikes. Such fluctuations are typical for
speed calculations based on high-frequency
position data. Minor inaccuracies in discrete
position measurements can lead to significant
variations in speed estimates due to short
time intervals and the differentiation process,
which magnifies noise (Punzo et al., 2011).
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This discrepancy suggests that neither speed
representation is fully reliable for fine-grained
motion analysis, and that SSM computations
may be affected in different ways depending
on which input is used.

Following the proposed process (as shown
in Figure 1), we find that the quality of the
present data does affect conflict detection.
However, the number and extent of data
errors seem small, suggesting that improved
preprocessing might be able to resolve the
existing issues in the dataset.

4.6 Application specific preprocessing -
iteration 2

We extend the preprocessing routine
with two additional steps to address the
previously identified errors: first, a trajectory
reconstruction approach that smooths
object positions, headings and speeds while
preserving internal consistency, and, second,
a step to address object size errors.

Trajectory reconstruction aims to infer
the most plausible movement of an object,
given noisy or incomplete observations. The
method used here is based on the approach
proposed by Zhao et al. (2024) who formulate
trajectory reconstruction as a constrained
non-linear optimisation problem. Their model
minimises the deviation between the original
and reconstructed trajectories, subject to
physical constraints, such as limits on speed,
acceleration, turning radius, and jerk. These
constraints make this approach attractive for
SSA as many SSMs require plausible attributes
such as speed and acceleration. Since the
plausibility of these attributes is ensured on
the trajectory level instead of smoothing on the
attribute level, the approach ensures internal
consistency, meaning that these derived
attributes are consistent with the spatial and
temporal differences between consecutive
positions. It therefore also resolves the
previously observed lag in speed values. We
adopted the parameter settings proposed in
the original study, with one exception: The
suggested limit for lateral acceleration (0.18 g)
proved overly restrictive for several left-
turning trajectories in our dataset. To account

for real-world variability—particularly in
sharp turns—we relaxed this constraint to
0.5 g, which yielded smoother and more
plausible results without compromising
physical plausibility.

Since the trajectory reconstruction approach
only handles object positions over time but
not the size of objects, we need to address
size-related issues separately. While the
MOT system captures object dimensions very
well in general, the data show occasional
outliers which influence SSA. Due to the
live characteristics of the system, object
dimensions may fluctuate throughout a
trajectory. Assuming that the system correctly
captures the dimensions of an object for the
majority of its observation time, we choose to
replace the dynamic dimension attributes by
their median value per trajectory.

4.7 Effects of preprocessing changes

Following the updated preprocessing, we
compare the new results to the analyses
conducted during the first iteration. Figure 6
shows the histograms of SSM values from
the second iteration on the full week dataset
as grey areas. Compared to the histograms
from the first iteration (black lines), several
differences are noticeable. The number of low
SSM values is significantly reduced across all
scenarios. Differences between scenarios exist
in the number of bins with reduced frequency
as well as in the extent of the reduction per
bin.

In the left-turn following scenario (a), values
in the range 0.0–1.5 s are rarer in the second
iteration, while values in the range 1.5–3.0 s
are slightly more frequent. Above 3 s, the
direction of change differs from bin to bin
but there seems to be a tendency towards
a lower frequency. In total, less values
fall in the displayed range of 0.0–5.1 s. In
the straight-through following scenario (b),
values in the range 0.0–1.5 s are slightly less
frequent. Above 1.5 s, the frequency has
increased in general. In total, more values
fall in the displayed range of 0.0–5.1 s. In
the lateral scenario, TTCmin values in the
range 0.0–2.1 s have become significantly less
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Figure 9. Example of delayed speed attribute values

frequent, especially values in the range 0.0-
0.9 s, whose frequency is reduced by more
than 60% (c). The range 2.1–3.0 s shows an
increased frequency. In total, significantly less
values fall in the displayed range of 0.0–5.1 s.
The PET (d) shows a reduced frequency of
values in the range 0.0–0.6 s of about 50%,
while the frequency in the remaining bins
remains quite similarwith a tendency towards
a slight reduction. In total, fewer values fall
in the displayed range of 0.0–5.1 s. Overall,
the PET histogram shows the least change
between iterations and thus the smallest effect
of the applied correction methods on the
assessed conflict risk. Despite a significant
reduction, the left-most bin corresponding
to values in the range 0.0–0.3 s remains
prominent for TTCmin in all three scenarios,
indicating an implausibly high number of very
dangerous situations or even collisions.

Moreover, we investigate the effects of the
improved preprocessing on the data subset
previously analysed, where we identified
whether the detected conflicts were caused
by data errors. We investigate whether the
situationsmeeting the conflict definition in the
first iteration still meet the conflict definition,
how the SSM values have changed and how

many new situations now meet the conflict
definition.

Figure 10 summarises these aspects
graphically. Each dot represents a conflict
situation. Its location is determined by its SSM
value in the first iteration (horizontally) and
in the second iteration (vertically). Positional
noise is added to the points in the plot to
avoid overlapping. Situations that meet the
conflict definition in one iteration, but not in
the other are located in the grey ”NA” area—
either at the top or on the right, respectively.
Here we do not distinguish between situations
with a value above the threshold of 3 s and
situations in which the SSM could not be
calculated. For example, the TTC cannot be
calculated if objects are not on a collision
course. For situations above the dotted line,
the calculated SSM value was higher in the
second iteration. Red dots represent situations
in which the manual evaluation detected data
errors. Grey dots in the right grey areas
represent situations that did not meet the
conflict definition during the first iteration
and thus were not assessed. In contrast to
analysing the changes of the frequency of
values, this view also reveals how individual
SSM values changed from one iteration to the
other.
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Figure 10. Comparison between iteration 1 and iteration 2 of SSMs in conflict situations

In correspondence with the histogram of
the full week dataset (Figure 6), these results
also show that PET is hardly affected by the
changed preprocessing routine: PET values
did not change much in any situation; only
a few situations, whose SSM values had
already been rather high and close to the
conflict threshold, no longer meet the conflict
threshold after the changes to preprocessing,

including the one identified error; no new
situations meet the conflict definition.

The TTCmin, however, shows several
changes. Overall, there is a tendency
towards higher TTCmin values due to the
preprocessing changes, i.e., a tendency
towards a lower assessed conflict risk.
Several situations no longer meet the conflict
definition, including situations that had
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shown very low TTCmin values before (points
in the top-left of each panel). Most of these
had been identified as data errors. However,
several new conflicts have emerged in the
assessment. Some of them even show rather
low TTCmin values, not just values near
the threshold. Noticeably, the effects in the
straight-through following scenario appear
to be different from the other scenarios.
While it also shows significant differences
between the two iterations, situations with
increased TTCmin values and reduced TTCmin
values are equally frequent. Another
interesting perspective focuses on situations
with detected errors (red dots) only. In the
left-turn following and the lateral scenario, the
TTCmin of such situations ismostly higher and
only rarely remains equal or is slightly lower.
However, many of the error-related situations
also fulfil the conflict definition clearly in
the second iteration. The correction methods
were not sufficient to resolve these errors. In
the straight-through following scenario, some
situations corresponding to data errors are
among those with the highest reduction of
TTCmin through the changed preprocessing,
meaning that situations that were wrongly
identified as conflicts in the first iteration
are now assessed to be even more critical.
Considering the FDR in iteration 2, we can
derive a lower limit without repeating the
manual, visualisation-based step by assuming
the new, additional conflict situations to all be
true positives. Even under this assumption,
the FDR for TTCmin-based SSA remains
considerable with 16%, 13%, and 29% in the
left-turn following, straight-through following,
and lateral scenario, respectively.

To better understand the distinct behaviour
observed in the straight-through following
scenario, we analyse the corresponding
situations in detail. We find that many of
the detected conflicts involve large vehicles,
such as buses and trucks. The MOT
system appears to occasionally struggle with
reliably determining bounding boxes of such
objects during detection. As a result, the
bounding boxes and also their centre points,
i.e. the objects’ positions, jump noticeably
between time steps, with some positions even

appearing behind earlier ones. Through the
trajectory reconstruction in iteration 2, the
resulting positions were spatially ordered in
a physically plausible sequence—that is, they
are no longer located behind earlier positions
along the vehicle’s path. However, the
corrected positions remain as close as possible
to the original erroneous ones, without
violating the model’s speed and deceleration
limits. As a consequence, the speed of
the reconstructed trajectories occasionally
drops significantly, which in turn leads to a
collision coursewith following vehicles, whose
velocities remain higher. Even though the
reconstruction improved these low-quality
trajectories in terms of physical plausibility, it
also increased the assessed conflict risk from
an SSA perspective, as it sometimes amplified
errors in the relative movement within a pair
of objects.

Correcting object dimensions by using the
median values per trajectory in addition to
trajectory reconstruction had no significant
impact on this effect. This countermeasure
comes too late because incorrect bounding
boxes lead to incorrect centre positions which
represent incorrect object positions. In severe
cases, such as the one described above, the
applied trajectory reconstruction approach,
that does not consider bounding boxes, is not
able to correct data sufficiently.

The results of the second iteration mark
the end of the proposed process for assessing
SSA reliability. Even though the changed
preprocessing routine has shown some
improvements of TTCmin-based SSA, it was
not capable of correcting errors in the dataset
sufficiently. To the best of our knowledge,
existing correction methods will not be able to
correct the errors that have been identified
in the present data, in order to enable
reliable TTC-based SSA. However, the process
demonstrated that data quality is sufficient for
conducting reliable SSA based on the PET.

5. Conclusion

This study proposed and tested a practical
approach for assessing the reliability of
a particular SSA approach based on data
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from an MOT system treated as a black
box. The proposed framework enables the
identification of relevant data artefacts by
leveraging human visual perception. It also
provides a framework to iteratively assess
whether data correction methods are capable
of sufficiently improving data quality with
respect to SSA outcomes.

The experiments showed that even in
relatively clean MOT datasets, infrequent and
minor inaccuracies in position, heading, or
speed can lead to significant overestimation
of conflicts. This underlines the need for
application-specific data quality evaluation,
going beyond general-purpose, application-
independent assessments of MOT algorithms
or systems in the context of SSA.

Furthermore, the experiments provided
answers to the research questions stated in
Section 1.2.

• Q1: The experiments demonstrated
the practicality and usefulness of the
proposed process, which was able to
reveal data errors that caused false
positive conflict detections and thus
affected the reliability of SSA. Even
though the process focuses on detected
conflicts and does not consider false
negatives, it provided valuable insights
into data structure and quality with
respect to the particular SSA application.
The process has been designed so that
it can be applied to datasets from any
generally validated MOT system by
treating the system as a black box.
Therefore, these results are expected
to generalise well to other datasets
and scenarios. However, practical
applicability to other datasets and
scenarios should be confirmed by future
research.

• Q2: The results indicate that PET is
considerably more robust to minor
data inaccuracies than TTCmin. This
is likely due to PET being calculated
based on observed positions, making it
less affected by short-term fluctuations
or sensor noise. In contrast, TTCmin
depends on predicted future movements

derived from instantaneous speed
and heading, which makes it more
susceptible to momentary errors in
motion attributes. This can lead to
artificially low TTCmin values and false-
positive conflict detections. While this
finding is based on a single dataset and
a limited number of conflict scenarios, it
aligns with the nature of each measure
and is therefore expected to generalise to
other scenarios with similar data quality
issues. However, future research is
needed to confirm this finding for further
sensor systems and scenarios. Moreover,
future research could consider making
robustness against certain types of data
errors a selection criterion for SSMs.
Reliable SSA not only requires a selected
SSM to theoretically capture safety-
relevant aspects of a situation, but also
to be reliably applicable to the available
data, which, in practice, is rarely of
perfect quality.

• Q3: The experiments also demonstrated
how the proposed process can be used to
investigate the effects of data correction
methods. These effects were observable
without repeating the visual-analytics-
based evaluation of conflict situations
from the first iteration. Instead, it was
sufficient to inspect the changes to SSM
values of already analysed situations.
However, if multiple iterations are
conducted, a repetition of that stepmight
also be useful.

• Q4: Even though the applied correction
methods addressed position-, speed-, and
size-related errors and caused significant
changes to the criticality of situations,
they did not sufficiently improve data
quality for a reliable application of TTC-
based SSA to our data. In particular, the
separate treatment of position- and size-
related errors seems to be problematic,
as both depend on erroneous bounding
boxes and are therefore interrelated.
Future research could investigate
approaches of reconstructing bounding
box trajectories, i.e. sequences of time-
referenced bounding boxes instead of
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sequences of time-referenced points, in
order to enhance imperfect MOT data
specifically for reliable application in
SSA.

A limitation of our study arises from
the task of selecting scenario-relevant
trajectories, particularly under imperfect
data conditions. As demonstrated by our
experiments, different trajectory selection
approaches can yield notably different results,
particularly in areas where multiple scenarios
overlap spatially. However, without access to
ground-truth data, we could not conclusively
determine which selection method was
more accurate. The filtering effect of geo-
fencing compared to a clustering-based
selection technique was beneficial for SSA
reliability in our experiments but might not
generalise to other systems or scenarios.
Consequently, unintended data losses or the
inadvertent inclusion of irrelevant data may
bias SSA outcomes and their reliability. This
methodological challenge appears currently
underexplored within the broader context
of SSA research based on MOT data. Future
research should address this trajectory-
selection issue in greater depth, critically
evaluating its implications for SSA reliability,
and developing hybrid or more sophisticated
selection methods. Such approaches should
also aim to optimally balance computational
efficiency, completeness of data, and accuracy.

While this work provides a broad but
structured framework for evaluating the
data quality aspect of SSA reliability, it
also demonstrates its concrete applicability
through a detailed real-world case study.
This provides a foundation for future studies
targeting individual components in greater
depth. Even though our process effectively
addresses data quality based on detected
conflicts, the consideration of potential
false negatives remains an important open
issue that warrants further investigation,
particularly in complex traffic scenarios.
To enhance scalability and consistency,
future implementations of the proposed
process could explore semi-automated visual
diagnostics or embed anomaly detection into
the visual evaluation workflow.
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