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This paper explains the logic of empirical testing of accident prediction models. The
key element of empirical testing is to make out-of-sample predictions of the number
of accidents. This means that a model developed in sample A is applied, without
modification, to predict the number of accidents in sample B. The procedure is
illustrated in two samples formed by randomisation. A model fitted to the first sample
was applied to predict the number of accidents in the second sample. The model was
only partly supported. In general, any accident prediction model is likely to be merely
a local statistical description of a particular data set. If tested by means of out-of-
sample predictions, the model is very likely to be falsified. This does not mean that
accident prediction models do not show general tendencies, but these tendencies are
likely to be empirically supported only at a qualitative level, or at best an ordinal level
of numerical measurement. In this sense accident prediction models are similar to
many models developed in economics. The models predict the direction, and in some
cases the relative strength of statistical relationships, but not their precise numerical
values.

1. Introduction

Accident prediction models, developed by
means of negative binomial regression or
related techniques, have become an important
tool for road safety analysis and planning.
Hundreds of accident prediction models have
been developed, and have been applied, for
example, to predict the number of accidents
for junctions or road sections with known
traffic volume and other characteristics. The
Highway Safety Manual relies on accident
prediction models to estimate the expected
number of accidents for various types of
highways and intersections. However, there
is surprisingly little information about how
accurate the predictions made by accident
prediction models are. Do such models
predict well in data sets that were not used
to develop the models? If not, how wrong
must predictions be to conclude that a model
is wrong, or falsified? How can criteria for
confirmation and falsification of accident

prediction models be defined and evaluated?
In other words: what is the logic of empirical
testing of accident prediction models?

A search for studies discussing this problem
did not produce a single positive finding.
Remarkable as it is, not a single of the
hundreds of accident prediction models
appears to have been tested empirically. The
problem is never even mentioned. Perhaps
a reason for this, is that studies that might
be interpreted as empirical tests of accident
prediction models use the words “calibration”
or “transferability” to refer to the analyses
performed (see e.g. Sawalha & Sayed, 2006;
Srinivasan et al., 2013; Srinivasan et al.,
2016; Farid et al., 2016; Tang et al., 2020;
Avelar et al., 2021; La Torre et al., 2022).
Calibration, introduced in the Highway Safety
Manual (AASHTO, 2010), denotes adjusting
the predictions of a model by multiplying
them with the ratio between the observed
and predicted number of accidents. Initially,
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a single calibration factor was applied
to all units of observation for which an
accident prediction was sought. Subsequently,
more advanced calibration methods were
developed (Srinivasan et al., 2016), enabling
unique calibrated values to be estimated
for each unit of observation. Analyses of
transferability focus on estimated model
parameters (coefficients). There are two main
types of parameters: the scale parameter
(constant term) and the shape parameters
(parameters for each of the variables included
in a model). Calibration typically starts
by adjusting the scale parameter. If this
results in a good fit to the data, the other
parameters are left unchanged. If the model
still does not fit well, one or more of the
shape parameters may also be adjusted. The
objective of the analysis is to find a model
that fits the data well. As will become clear
later in the paper, such an analysis does not
represent an empirical testing of a model,
since the objective is only to find a set of
parameter values that describe a givendata set
better than any other set of parameter values.
Analysts are, as it were, proposing hypotheses
after looking at the data and aim to formulate
those hypotheses that are most consistent
with the data. Empirical testing, on the other
hand, makes predictions that may turn out
to be wrong, i.e. imply the falsification of
a model. Empirical testing requires criteria
of falsification, that is statements defining
those observations that will lead the analyst
to conclude that a model has been falsified.

Following a brief review of some studies
evaluating the transferability of accident
prediction models, the logic of empirical
testing of such models is explained more in
detail and falsification criteria are proposed.
The main objective of the paper is to explain
the logic of empirical testing of accident
prediction models and illustrate how such a
test can be performed.

2. Review of studies of transferability
of accident prediction models

Studies evaluating the transferability of
accident prediction models come closer

to empirical testing of the models than
calibration studies. However, these studies do
not formulate explicit criteria of falsification,
which would amount to criteria specifying a
failure to identify any method for transferring
an accident prediction model with sufficiently
accurate results. The notion of “sufficiently
accurate results” is not very precise and
has been interpreted differently in different
studies.

Sawalha & Sayed (2006) studied whether
an accident prediction model developed for
the city of Vancouver could be transferred
to the city of Richmond. Three methods for
transferringwere compared. It was concluded
that a maximum likelihood method, which
adjusted the shape parameter of the negative
binomial distribution (this parameter is the
inverse of the over-dispersion parameter)
and the constant term of the accident
prediction model gave the most accurate
results. Accuracy was assessed only by means
of a summary statistic and no data were
presented on the accuracy of the transferred
model for each street section.

Farid et al. (2016) proposed to use the
empirical Bayesmethod to adjust the results of
a transferred accident prediction model. They
noted, however, that there is an element of
self-contradiction in this procedure, since it
assumes that data on the recorded number of
accidents, which could serve as the basis for
developing a local accident prediction model,
are available. However, it is difficult to
understand how the precision of a transferred
accident prediction model can be assessed at
all if no accident data are available. At any
rate, Farid et al. found that adjusting model
predictions by means of the empirical Bayes
method gave more precise predictions. This
is hardly surprising, as no model contains
all variables that are related to the number
of accidents. Thus, the recorded number of
accidents contains some information on the
site-specific effects of variables not included in
the accident prediction model.

Tang et al. (2020) introduced a learning
algorithm to improve the transferability of
accident prediction models. The use of this
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algorithm did improve the accuracy of a
transferred model, but the reported mean
square prediction errors remained quite large.
Diagrams presented in the paper indicate
large prediction errors. Indeed, errors of the
magnitude shown in Figure 3 of the paper by
Tang et al. would normally justify concluding
that the transferred model has been falsified,
since it inmost cases does not predict correctly
and in many cases very erroneously.

La Torre et al. (2022) evaluated the
transferability of the Highway Safety Manual
(HSM) accident prediction model for freeways
to a sample of European countries. Their main
conclusion was that developing jurisdiction-
specific accident prediction models, i.e.
models for each country, produced more
precise predictions than those obtained by
transferring the HSM model. This result
goes a long way towards rejecting the entire
notion of transferability and suggesting that
unique accident prediction models should be
developed for each data set for which a need
is felt for such models.

3. The logic of empirical testing of
theories

It is an aim of most branches of science to
uncover lawlike relationships. Some branches
of science deny the existence of lawlike
relationships. Historians, in particular,
argue that searching for universal causes of
revolutions or war makes no sense, as each
revolution or war has its particular causes.
Nevertheless, statistical regularities can be
observed in many historical data sets. These
regularities may be somewhat noisy and
should not be viewed as anything nearly as
well-established as the laws of natural science.
Still, the existence of the regularities ought
to challenge researchers into developing the
most parsimonious general description of
them.

Accident research is placed somewhere
between the pure natural sciences and history
as far as the existence of lawlike relationships
is concerned. It ought to be possible to develop
accident prediction models containing rather
few terms referring to variables for which

data are normally available and subject the
models to empirical testing. In a classic paper
in economics, Friedman (1953) discussed the
logic of testing scientific hypotheses. He stated
the following regarding the logic of such tests:

“The only relevant test of the validity of a
hypothesis is comparison of its predictions with
experience. The hypothesis is rejected if its
predictions are contradicted; it is accepted if its
predictions are not contradicted.”

He continued:

“Truly important and significant hypotheses
will be found to have “assumptions” that are
wildly inaccurate descriptive representations of
reality, and, in general, the more significant the
theory, the more unrealistic the assumptions
(in this sense). … The relevant question to
ask about the “assumptions” of a theory is not
whether they are descriptively “realistic”, for
they never are, but whether they are sufficiently
good approximations for the purpose in hand.
And this question can be answered only
by seeing whether the theory works, which
means whether it yields sufficiently accurate
predictions.”

In economics, it is often assumed that
consumers or producers are perfectly rational.
Friedman accepted that this assumption is
often descriptively inaccurate but maintained
that hypotheses based on it can be accepted if
their empirical predictions are supported by
data.

When developing accident prediction
models, researchers take great care to develop
models that fit the data as closely as possible.
Tools to help ensure this (the integrate-
differentiate tool and the cumulative residuals
plot tool) have been developed by Hauer &
Bamfo (1997). Other approaches intended
to help develop models that fit the data well
include the choice of probability distribution
for accidents (Poisson, negative binomial,
Posson-lognormal, negative binomial-Lindley,
etc.), variable transformations (natural
logarithm, square terms, square root terms,
etc.), use of interaction terms (variables
multiplied by each other), use of random
parameter models (Mannering et al., 2016),

Traffic Safety Research 3



Elvik, R. (2025) The logic of empirical testing of accident prediction models

or modelling the accident generation process
as having more than one modality (e.g. a
zero or low-mean state in addition to the
normal state) (Lord & Mannering, 2010). The
widespread use of these tools shows that in
accident modelling, getting the assumptions
right, i.e. developing a model which is
as descriptively accurate as possible is an
important analytic objective. This approach
to model development is in major contrast to
the use of highly simplifying assumptions in
economic models.

The great emphasis put on descriptive
accuracy in accident prediction models
can perhaps be traced to the fact that:
“There is no theory behind Equation 1 (an
accident prediction model for intersections,
my remark), there are no good reasons for
which it has been chosen, and there are many
functions that would fit the data just as well or
better but yield different extrapolated values”
(Hauer 2025:10). If models cannot be based
on theory, they must be based on data and
made to fit the data as well as possible. It is
only by developing and comparing models for
different data sets that onemay learn whether
a particular type ofmodel, or family ofmodels,
has any general validity.

These points of view are too pessimistic.
It is of course correct that there are no
theories of accident causation that are as
general and concise as the theory of rationality
in economics or the theory of gravity in
physics. It is, however, not true that no
conceptual framework can be developed that
impose reasonable constraints on both: (1)
the variables to be included in an accident
prediction model and (2) the functional form
of the relationship between these variables
and the number of accidents.

This paper applies an accident prediction
model for junctions to explain the logic of
empirical testing of such models. The next
section therefore discusses whether there is
any theoretical basis for defining a basic
general form for an accident prediction model
for junctions.

4. Theoretical guidance for accident
prediction models

Elvik et al. (2009) and Elvik (2010, 2015)
discuss elementary units of exposure and
their relationship to accident occurrence. An
elementary unit of exposure is any countable
event that has the potential of generating
a traffic conflict. One such event is the
simultaneous arrivals at a junction from
conflicting directions of two or more vehicles
or road users. One of the vehicles or road
users must then give way to the other to avoid
a conflict or accident. If a simultaneous arrival
is defined as arrival within the same second, it
canbe shown that the number of simultaneous
arrivals that have the potential of generating
a conflict increases much faster than the
number of vehicles entering a junction. Thus,
if the number of entering vehicles increases
by a factor of 20 in a three-leg junction, the
number of simultaneous arrivals increases
by a factor of 228.5. However, most of these
simultaneous arrivals will not result in a
conflict, because road users can predict (most
of) the arrivals and adapt their behaviour to
them. Elvik (2010, 2015) refers to this kind
of behavioural adaptation as learning: the
repeated exposure to a certain event teaches
roadusers how tobehave in that event to avoid
a conflict or accident.

Learning is never perfect. Therefore, some
of the simultaneous arrivals develop into
conflicts in which fast action must be taken to
avoid an accident. A few of the conflicts are
detected too late to avoid an accident. There is,
however, sufficient statistical regularity in the
occurrence of events and road user adaptation
to them to propose a number of hypotheses
about the sign and magnitude of coefficients
in accident prediction models for junctions.
It is assumed that the number of entering
vehicles is known for all approaches. It is
further assumed that the number of legs in the
junction is known, the type of traffic control
is known, and the speed limit is known. It is
assumed that the number of entering vehicles
is stated in terms of its natural logarithm
(ln). Transforming continuous variables to
their natural logarithms is very common in
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accident modelling. The following hypotheses
are proposed:

H1: The sum of the coefficients for major
and minor entering volume will have a value
greater than 1. Both coefficients will be
positive.

H2: The values of the coefficients for
entering volume will be nearly proportional
to the shares represented by major road and
minor road entering volume, although with
a slightly higher than proportional value for
minor road entering volume.

H3: The coefficient for the number of legs
will be positive.

H4: The coefficients for speed limit
(assumed to be represented by a set of dummy
variables) will indicate a consistent increase
in the number of accidents as speed limit
increases.

All hypotheses are subject to the “all else
equal” clause. If, for example, the sum of
the coefficients for entering volume is 1.1,
one might expect a coefficient close to 0.8 for
major road entering volume and close to 0.3
for minor road entering volume in junctions
where, on average, 80% of vehicles enter from
themajor approaches and 20% enter from the
minor approaches. It is reasonable to expect
that there will be a “safety-in-numbers” effect
for minor road entering volume, meaning that
if it increases from, say, 20 % to 40 %, the
value of the coefficient for minor road volume
will not double, but might increase from 0.3 to
0.45. The coefficient for major road entering
volume might decrease, for example from 0.8
to 0.7.

Accident prediction models where the
coefficients satisfy the constraints implied
by the above hypotheses will be judged as
theoretically plausible. Again, however, using
such a formulation does not suggest that some
highly developed theory supporting precise
predictions of coefficient values exists. The
hypotheses are only a framework for assessing
whether a set of coefficients have plausible
values. They are what Elvik & Høye (2023A)
referred to as “low-level” theory.

5. The random split half method

A data set including 730 rural junctions in
Norway, with data for 1997-2002 (Kvisberg,
2003) is used to illustrate the logic of empirical
testing of accident predictionmodels. For each
junction, data on the following variables was
available:

1. Major road entering volume

2. Minor road entering volume

3. Number of legs (3 or 4)

4. Speed limit (40,50,60,70,80,90 km/h)

5. The number of injury accidents during
1997-2002

All junctions were controlled by yield signs
on the minor approaches. To create a data set
for testing how well an accident prediction
model predicts accidents in a data set not
used to develop the model, the junctions were
randomly split into two equally large groups.
This was done by running the “random
between 0 and 1” routine in Microsoft Excel.
This routine generates either 0 or 1 at random.
Since no two random samples of the numbers
0 and 1 will be identical, the routine was run
nine times. This generated a 730 rows by 9
columns matrix of 0 and 1. For each row, a
sum was computed. If it was 5 or greater,
the number 1 was assigned; otherwise the
number 0 was assigned. This way two groups
were formed. One group consisted of 360
junctions, the other consisted of 370 junctions.
An accident prediction model was fitted to the
group consisting of 360 junctions.

Was randomisation successful, i.e. were the
two groups identical, or almost identical, with
respect to the variables for which data were
available? Table 1 compares the two groups.
Differences were tested with respect to the
following variables:

1. The distribution of the junctions
according to the number of accidents

2. The mean number of accidents per
junction
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3. The relative contributions of random
and systematic variation in the number
of accidents to the variance of the
distribution of accidents between
junctions

4. The distribution of junctions according to
the number of legs

5. The distribution of junctions according to
speed limit

6. The mean entering volume from the
major road

7. The mean entering volume from the
minor road

The speed limits of 40 and 50 km/h were
merged into one group labelled “50 km/h”,
as very few junctions had a speed limit of
40 km/h. As can be seen from Table 1, six
of the seven comparisons did not indicate a
systematic difference between the two groups.
The only difference between the groups
concerned the distribution of the number of
accidents between junctions. However, the
general shape of the distribution was very
similar, with a large majority of junctions
recording zero accidents.

With respect to accident modelling, it
is reassuring that the two groups had an
almost identical mean number of accidents
and an almost identical share of systematic
variation in the distribution of accidents.
These similarities are more important than
having the same distribution of the count of
accidents (0, 1, etc) between junctions.

6. The accident prediction model

A negative binomial regression model was
fitted to the 360 junctions forming the first half
of the data set. Table 2 shows the coefficients
of the accident prediction model. The speed
limits of 40 and 50 km/h were treated as one
group, as few junctions had a speed limit of
40 km/h. The model was fitted in four stages,
adding a new variable at each stage. The
standard error of each coefficient is shown
in parentheses and the P-value in brackets.
The correlations (Pearson’s r) between the

independent variables were small; the largest
being .457 between major and minor road
entering volume. Collinearity is therefore not
a problem.

Based on the hypotheses in section 4, the
following predictions were made regarding
the estimated coefficients:

1. The sum of the coefficients for traffic
volume is greater than 1.

2. Both coefficients for traffic volume will
be positive.

3. The coefficient for major road entering
volume is greater than for minor road
entering volume.

4. The value of the coefficient for minor
road entering volume is greater than
strict proportionality with entering
volume implies.

5. The coefficient for number of legs is
positive.

6. The coefficients for speed limit are
consistent with a monotonous increase
in the number of accidents as speed limit
increases.

A validity score of 1 is assigned if an
estimated coefficient is consistent with
predictions; otherwise a value of 0 is assigned.
Validity refers to theoretical validity as
discussed by Elvik & Høye (2023A). The
coefficients estimated in model 4 are, by
and large, consistent with the hypotheses
proposed. Table 3 compares the predictions
based on the hypotheses to the estimated
values of the coefficients. The comparison is
based on model 4.

The sum of the coefficients for entering
volume was 1.035, which is just above the
value of 1 (hypothesis 1). Both coefficients
were positive. The mean split between
major and minor road entering volume is
85.6 % entering from the major road and
14.4 % entering from the minor road. The
coefficients are nearly proportional with these
shares, although, as proposed by hypothesis
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Table 1. Comparing junctions split randomly into two groups

Variables compared Values of variables First half Second half Comparison statistics
1 Distribution of accidents 0 240 249  
  1 68 75  
  2 30 18  
  3 13 15  
  4 5 10 Χ2 = 13.31; df = 5
  5 2 1 P‐value = 0.021
  6 1  
  7 1 1  
  9 1  
  Total 360 370  
2 Mean number of accidents Mean 0.5917 0.5784 T: 0.1511
Variance of number of accidents Variance 1.2194 1.1574 P‐value = 0.880
3 Share of systematic variation Random 0.4852 0.4997 Z: ‐0.392
  Systematic 0.5148 0.5003 P‐value = 0.695
4 Number of legs 3 329 343 Χ2 = 0.92; df = 1
  4 31 27 P‐value = 0.337
  Total 360 370  
5 Speed limit (km/h) 50 73 65  
  60 107 109 Χ2 = 3.25; df = 4
  70 27 33 P‐value = 0.517
  80 147 154  
  90 6 9  
  Total 360 370  
6 Daily entering volume, major road Mean 3811.3 3438.5 T = 0.178; df = 728
  Standard error 197.6 180.1 P‐value = 0.859
7 Daily entering volume, minor road Mean 655.8 640.7 T = 0.898; df = 728
  Standard error 53.0 53.1 P‐value = 0.369

Table 2. Accident prediction model fitted to 360 junctions

Coefficients (standard error) [P‐value]
Term Model 1 Model 2 Model 3 Model 4
Constant ‐8.323 (0.894) [0.000] ‐8.702 (0.882) [0.000] ‐10.891 (1.079) [0.000] ‐10.968 (0.988) [0.000]
Ln (entering major) 0.954 (0.107) [0.000] 0.700 (0.114) [0.000] 0.700 (0.112) [0.000] 0.601 (0.106) [0.000]
Ln (entering minor) 0.397 (0.081) [0.000] 0.337 (0.080) [0.000] 0.434 (0.080) [0.000]
Legs (3 or 4) 0.813 (0.218) [0.000] 0.971 (0.205) [0.000]
Speed limit 50 km/h ‐0.727 (0.232) [0.002]
Speed limit 60 km/h ‐0.415 (0.202) [0.039]
Speed limit 70 km/h 0.465 (0.243) [0.056]
Speed limit 90 km/h ‐0.303 (0.577) [0.600]
Log likelihood ‐334.368 ‐321.801 ‐315.355 ‐306.124
Pseudo R2 0.1084 0.1419 0.1591 0.1837
Overdispersion 0.666 (0.207) [0.000] 0.501 (0.176) [0.000] 0.396 (0.157) [0.000] 0.202 (0.127) [0.000]

2, slightly above the proportional value for
minor road entering volume. The coefficient
for the number of legs is, as expected, positive
(hypothesis 3).

Speed limit was entered as a set of dummy
variables. The speed limit of 80 km/h
was omitted when fitting the model. The
coefficients are only partly consistent with

hypothesis 4. Ten pairwise comparisons can
bemade: 50 km/h versus 60, 70, 80 or 90 (4); 60
km/h versus 70, 80 or 90 (3); 70 km/h versus 80
or 90 (2); and 80 km/h versus 90 (1). Seven
of these comparisons were consistent with
predictions, three were not (70 km/h versus
80 km/h; 70 km/h versus 90 km/h; 80 km/h
versus 90 km/h). A validity score of 0.7 was
assigned (7/10). Total validity score was 5.7
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Table 3. Comparison of predictions based on hypotheses and values of estimated coefficients

Prediction Coefficients Validity score
The sum of the coefficients for entering volume will be
greater than 1

The sum of the coefficients was 1.035 1

Both coefficients for entering volume will be positive Both coefficients were positive 1
The coefficients will be roughly proportional to the shares
of entering volume, but the coefficient for minor road
entering volume slightly larger than implied by
proportionality

Proportionality implies 0.886 (major) and 0.149 (minor).
Estimates were 0.601 (major) and 0.434 (minor)

2

The coefficient for number of legs will be positive A positive coefficient was found 1
The coefficients for speed limit will imply a consistent
increase in the number of accidents as speed limit increases

Seven out of ten pairwise comparisons are consistent with
the prediction

0.7

out of a maximum possible score of 6. The
inconsistent results indicate a lower number
of accidents at the speed limits of 80 or 90
km/h than at the speed limit of 70 km/h. This
suggests that junctions with speed limits of 80
or 90 km/h may have a higher design standard
than junctions with lower speed limits, partly
offsetting the effects of the higher speed limits.
This is an example of omitted variable bias.
The coefficients for speed limits partly reflect
the effects of a variable not included in the
model: design standard.

Ideally speaking, an accident prediction
model should include all variables that are
related to the number of accidents. In practice,
this is impossible. Even in theory, a complete
enumeration of all relevant variables is
impossible. Therefore, it is impossible to
develop a model for which it can be shown
that all variables have been included, are
accurately measured, and the mathematical
form of their relationship to accidents (linear
or other) correctly specified. Of course, this
does not mean that omitted variable bias can
be neglected. It does mean, however, that one
can never be completely certain that is has
been eliminated.

Model 4 explains 94.1 % of the systematic
variation in the number of accidents,
according to the Elvik-index of goodness-of-fit
(Fridstrøm et al., 1995). This is quite good and
comparable to successive accident prediction
models developed for national and county
roads in Norway, which have explained more
than 90 % of the systematic variation in the
number of accidents (Elvik & Høye, 2023B).
Figure 1 shows a cumulative residuals plot for

model 4 based on the 360 junctions belonging
to the first half.

The huge majority of predictions are in the
range between 0 and 1. Out of 360 junctions,
296 are predicted to have a lower number of
accidents than 1. The predictions between 0
and 1 stray on both sides of the zero residuals
line. However, all predictions between 1 and
4 have positive residuals, meaning that in this
range the predicted number of accidents is
lower than the recorded number of accidents.

It is tempting to think of ways of fixing this.
One might, for example, add a square term
for entering volume. This would probably
shift the predicted values upward in the range
between1 and4, since thenumber of accidents
depends strongly on traffic volume and this
dependence is made stronger by adding a
square term. This temptation should be
resisted. It is not known if the prediction
errors can be attributed to the definition of
entering volume or some other variable. It
might as well be attributable to one or more
omitted variables. Moreover, it affects only
64 of the 360 junctions. Accepting the results
of the model fitted without changes, the next
questions are: (1) How well does the model
predict the number of accidents in the second
half of the junctions? (2) How can criteria of
falsification of accident prediction models be
formulated?

7. A problem of data incompatibility
and interpretation

The predictions developed by means of
accident prediction models are estimates of
the long-term expected number of accidents
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Figure 1. Cumulative residuals plot for model 4 fitted to 360 junctions

in each junction. The long-term expected
number of accidents is the number of
accidents expected to occur per unit of time
(in the current data set: six years) if traffic
volume (entering vehicles) and risk factors
(number of legs, speed limit) remain constant.
The data available for empirical testing of
the predictions show the recorded number of
accidents. This is a whole positive number: 0,
1, 2, etc. The predictednumber of accidents, on
the other hand, is a continuous variable and
can have any positive value: 0.25, 2.43, etc.
It is well-known that the recorded number
of accidents is not a good estimate of the
long-term expected number of accidents but
is likely to differ from the expected number
of accidents as a result of random variation
and/or effects of variables not included in
the accident prediction model. How, then,
can we determine if predictions are correct
– if the data used for this purpose mainly
reflect random variation and possibly effects
of omitted variables?

Fortunately, random variation in the
number of accidents around a given expected
number is known. It is described by the
Poisson probability distribution. Therefore,
for each predicted number of accidents, the
probability for 0,1, etc. accidents to occur is
known. This is illustrated in Figure 2.

Figure 2 shows outcomes that can be
regarded as consistent with predictions of
0.25 and 5.5 accidents. If the long-term
expected number of accidents is 0.25, only
the outcomes of 0 and 1 have a probability
of 0.05 or more of occurring. If 2 accidents
were observed, it would be a very improbable
outcome (probability 0.024) – so improbable as
to cast doubt on the predicted number. If 5.5
accidents are predicted, the range of outcomes
that have a probability of occurring of at least
0.05 is larger, spanning from 2 to 9 accidents.
The most probable outcome is 5 accidents,
but the probability is not very high (0.171).
All outcomes between 3 and 7 have roughly
equal probabilities of occurring. Fewer than 2
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Figure 2. Outcomes having a probability of at least 0.05 for a predicted long-term expected
number of accidents of 0.25 or 5.5

accidents or more than 9 would be regarded
as highly improbable outcomes.

It is now clear that empirical testing of
the predictions of a model for each unit of
observation must be imprecise in the sense
that there is usually no single outcome which
is the only one that is consistent with model
predictions. For a very low predicted number
of accidents, it might be the case that the single
outcome of zero accidents has a probability
exceeding 0.95. In all other cases, however,
several counts of accidents may be viewed as
consistent with model predictions. The next
section proposes criteria for the falsification
of accident prediction models based on this
discussion.

8. Falsification criteria for accident
prediction models

The basic criterion for assessing whether an
accident prediction model is confirmed or
rejected by the data is whether the residuals
are fully within the scope of random variation
or are larger than random variation can
account for. More specifically, the following
criteria are proposed:

1. The observed number of accidents for
each unit of observation should have a
probability of at least 0.05 of occurring,
given the model-predicted number of
accidents. For the whole sample, 95 %
should fulfil this criterion.

2. The distribution of accidents in
subsamples with a similar predicted

number of accidents should not deviate
from a random distribution.

3. The residual terms in subsamples with a
similar predicted number of accidents
should not be greater than random
variation can account for.

4. The coefficients for each variable should
be consistently replicated when a model
is fitted to a data set not known to differ
greatly from the data set used to develop
predictions.

The use of these criteria is shown in the next
section. It should be noted that all four criteria
must be satisfied to conclude that a model is
supported. If it fails at least one criterion, it is
concluded that the model is falsified.

9. Application of falsification criteria

The coefficients estimated in model 4 in
Table 2 were applied to predict the number
of accidents in the second half of junctions,
the 370 junctions that were not used in
developing the accident prediction model.
These junctions recorded 214 accidents in
total; the predicted total number was 236.9.
Predictions ranged from a minimum of 0.035
to a maximum of 17.48.

9.1 Consistency of predicted and observed
number of accidents

For each predicted number of accidents, the
expected distribution of the count of accidents
according to a Poisson-distribution having the
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Figure 3. Distribution of range of counts of accidents consistent with model predictions (within),
above model predictions or below model predictions

predicted number of accidents as mean value
was computed. Outcomes with a probability
of occurrence of at least 0.05 were identified.
As an example, in a junction with a predicted
number of accidents of 1.626, the probabilities
of outcomes were: 0 = 0.197; 1 = 0.320; 2 =
0.260; 3 = 0.141; 4 = 0.057. These outcomes
all had a probability of at least 0.05. Hence,
any count of accidents between 0 and 4 was
regarded as consistent with the prediction. A
range of outcomes, each with a probability of
at least 0.05, was generated for each of the 370
junctions. The number of outcomes within the
range, above the range and below the range
was counted. Figure 3 shows the result of the
count.

In about 95 % of the junctions, the observed
number of accidents was consistent with the
predicted number of accidents, i.e. it had a
probability of occurring of at least 0.05. In
4.3 % of the junctions, the recorded number
of accidents was above the range consistent

with the predicted number, and in 0.5 % of
the junctions it was below the range consistent
with the predicted number. These results
show that most predictions were reasonably
accurate.

9.2 The distribution of accidents in
subsamples

In order to examine the distribution of the
recorded number of accidents in subsamples
that have a similar predicted number of
accidents, the groups listed in Table 4 were
formed.

In each group, the Poisson probability
distribution of the recorded number of
accidents was estimated based on the mean
predicted number of accidents. Thus, in the
group with a mean of 0.245 (0.20-0.29), the
Poisson distribution of the recorded number
of accidents between the 43 junctions in
this group would be (rounded to the nearest
whole number): 34 = 0; 9 = 1. The actual
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distribution was: 33 = 0; 9 = 1; 1 = 2. When
testing the difference between the Poisson-
distribution and the actual distribution, cells
with expected frequencies (according to the
Poisson distribution) lower than 3 were
merged to avoid testing involving a very low
number of junctions.

Table 4. Groups of junctions with a similar
predicted number of accidents

Interval for
predicted
number of
accidents

Number of
junctions in

group

Mean
predicted
number of
accidents

Mean
recorded
number of
accidents

0.01‐0.09 53 0.068 0.075
0.10‐0.19 83 0.149 0.145
0.20‐0.29 43 0.245 0.256
0.30‐0.39 31 0.355 0.581
0.40‐0.49 23 0.449 0.435
0.50‐0.59 17 0.540 0.588
0.60‐0‐69 22 0.644 0.591
0.70‐0.79 12 0.752 0.636
0.80‐0.89 15 0.858 0.933
0.90‐1.09 18 0.992 1.389
1.10‐1.49 20 1.259 1.350
1.50‐1.99 14 1.749 1.143
2.00‐ 20 3.851 2.350

To test if these distributions differ, a
Chi-square test was applied. A total of
thirteen tests were performed, one for each
group listed in Table 4. None of the tests
were statistically significant. Hence, the
distribution of the accidents in each group did
not deviate from the distribution predicted
according to the Poisson distribution.

9.3 Residual terms not greater than
random

Table 5 shows the assessment of whether the
residual terms were greater than random. In
the first group, the total predicted number of
accidents was 3.608. The recorded number
was 4. The residual is 4 – 3.608 = 0.392. The
standard error of the residual was estimated
as:

SE (residual) =

√√√√√ Predicted
number of
accidents

+
recorded
numberof
accidents

This is based on the assumption of a Poisson
distribution in which the variance is equal to

themean. Hence, the variance of the predicted
number of accidents equals the predicted
number of accidents and the variance of
the recorded number of accidents equals the
recorded number of accidents.

The residuals are greater than random if
the ratio of residuals to the standard error
is greater than two or smaller than minus
two. As can be seen from Table 4, this was
the case in the group where the predicted
number of accidents was 2 or more. In
this group, the predicted number of accidents
was considerably higher than the recorded
number. It is concluded that the model fitted
to the first half of junctions did not predict the
number of accidents correctlywhen applied to
the second half of junctions.

9.4 Replication consistency of coefficient
estimates

A negative binomial regression model,
identical to the model fitted to the first half of
the junctions, was fitted to the secondhalf. The
estimated coefficients were compared for the
two models. Table 6 shows the comparison.

The differences between the coefficients are
the estimate in the first halfminus the estimate
in the second half. The standard error of the
difference was:

SE(difference) =
√
SE2

first half + SE2
second half

If the ratio of the difference in coefficient
estimates to its standard error is greater
than two or smaller than minus two, it
is interpreted as a systematic difference,
greater than pure random variation. As
can be seen from Table 6 , one of the eight
estimated coefficients differed by more than
two standard errors. This was the coefficient
for the speed limit dummy for a speed limit of
60 km/h. The coefficient for entering volume
from the minor road (ln(entermin)) was also
close to differing by more than two standard
errors.

If consistency in coefficients requires that
all coefficients are identical to within random
variation, it must be concluded that the
requirement is not fulfilled and that themodel
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Table 5. Evaluation of residual terms by group for predicted number of accidents

Interval for predicted
number of accidents

Total predicted
number of accidents

Total recorded
number of accidents

Residual (recorded
minus predicted)

Standard error of
residual

Ratio of residual to
standard error

0.01‐0.09 3.608 4 0.392 2.758 0.142
0.10‐0.19 12.384 12 ‐0.384 4.934 ‐0.078
0.20‐0.29 10.530 11 0.470 4.640 0.101
0.30‐0.39 11.020 18 6.980 5.387 1.296
0.40‐0.49 10.324 10 ‐0.324 4.508 ‐0.072
0.50‐0.59 9.181 10 0.818 4.380 0.187
0.60‐0‐69 14.176 13 ‐1.176 5.213 ‐0.226
0.70‐0.79 8.276 7 ‐1.276 3.908 ‐0.327
0.80‐0.89 12.867 14 1.133 5.183 0.219
0.90‐1.09 17.850 25 7.150 6.546 1.092
1.10‐1.49 25.177 27 1.823 7.223 0.252
1.50‐1.99 24.485 16 ‐8.485 6.363 1.334
2.00‐ 77.010 47 ‐30.010 11.136 2.695

Table 6. Coefficients estimated for first half and second half of junctions formed by
randomisation

  First half Second half
Term Estimate Standard error Estimate Standard error Difference in

estimates
SE (difference) Ratio difference/SE

(difference)
Constant ‐10.9678 0.9881 ‐10.7634 1.1026 ‐0.2044 1.4806 ‐0.1381
Ln(entmaj) 0.6007 0.1069 0.7795 0.1072 ‐0.1788 0.1514 ‐1.1810
Ln(entmin) 0.4341 0.0799 0.2166 0.0805 0.2175 0.1134 1.9176
Legs 0.9710 0.2054 0.8092 0.2365 0.1618 0.3132 0.5165
Dum50 ‐0.7273 0.2316 ‐0.7080 0.2773 ‐0.0193 0.3613 ‐0.0534
Dum60 ‐0.4155 0.2016 0.1926 0.2070 ‐0.6081 0.2889 ‐2.1045
Dum70 0.4649 0.2429 0.4365 0.2534 0.0284 0.3510 0.0809
Dum90 ‐0.3030 0.5774 ‐0.3220 0.7609 0.0190 0.9552 0.0199

fitted to the first half of the junctions has not
been confirmed for the second half of the
junctions. Still, one may ask if the differences
in coefficient estimates imply differences in
the predicted number of accidents. Figure4
sheds light on this question. Figure 4 shows the
correlation between the predictions based on
themodel fitted to the first half of the junctions
and the predictions on the model fitted to the
second half of the junctions.

The predictions are correlated (Pearson’s r
= .925), but few of them are identical or close
to it. If that were the case, all data points
would be located on top of dashed 45-degree
line showing identical predictions. Figure 5
sheds further light on the differences in the
predicted number of accidents. It shows the

values of the ratio:

Predicted number of accidentsaccording to
model fitted to first half of junctions

Predicted number of accidents according to
model fitted to second half of junctions

If the predictions were identical, this ratio
should have a value of one. Figure 5 shows
that very few predictions were identical or
close to being so.

It is nevertheless relevant to ask if the
differences between the predictions of the
two models are larger than random. If
the predicted number of accidents for each
junction is interpreted as an estimate of
the mean value of a Poisson variable, the
statistical significance of the differences
between the two models in the predicted
number of accidents can be tested by
estimating the standard error of the difference
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Figure 4. Scatterplot of predictions according to models fitted to the first and second half of
junctions

in predictions as follows:

Standard error of
difference in

predicted number
of accidents

=
√

Pred1 + Pred2

If the difference between two predictions
is larger than plus or minus two standard
errors, it is statistically significant at the 5
% level. When this test was applied to the
two models developed in the paper, not a
single difference in the predicted number
of accidents was found to be statistically
significant. However, many predictions were
sufficiently different for the difference to
have practical importance, despite its lack of
statistical significance.

To give one example, in one junction, the
model fitted to the first half of the data
predicted 17.5 accidents when applied to
the second half of the data. The model
fitted to second half of the data predicted

9.4 accidents. The difference, 8.1 accidents,
is not statistically significant, given that the
predictions are treated as mean values of
a Poisson distribution. Yet, one can easily
think that the difference would have practical
importance. Measures that would be cost-
effective if the true long-term expected
number of accidents is 17.5 might not be cost-
effective if the expected number of accidents
is 9.4.

The model fitted to the first half of the
junctions explained 94.1 % of the systematic
variation in thenumber of accidents according
to the Elvik-index of goodness-of-fit. The
model fitted to the second half of the junctions
explained 88.2 % of the systematic variation in
the number of accidents. Thus, both models
had a high explanatory value.

9.5 A preliminary conclusion

A data set consisting of 730 junctions was
randomly divided into one group consisting
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Figure 5. Comparison of predicted number of accidents for model fitted to first half of junctions
and model fitted to second half of junctions

of 360 junctions and one group consisting
of 370 junctions. There were no statistically
significant differences between the two
groups of junctions with respect to:

1. Mean entering volume from the major
road

2. Mean entering volume from the minor
road

3. Mean number of accidents per junction

4. The relative contributions from random
and systematic variation in the number
of accidents to the distribution of
accidents between junctions

5. The distribution of junctions according to
the number of legs (3 or 4)

6. The distribution of junctionswith respect
to speed limit.

Onemight expect that an accident prediction
model fitted to the first group of junctions

could be transferred without modification to
the second half of junctions and predict the
number of accidents in that group correctly,
given that the two groupswere so similar. This
did not turn out to be the case. Four criteria
of falsification were proposed and predictions
evaluated with respect to each criterion.

The first two criteria did not indicate that
the predictions were systematically wrong.
Residual terms were not greater than random
variation could account for. The third
criterion indicated prediction errors if the
predicted number of accidents was more than
two. In that case, the model predicted far
too many accidents. The fourth criterion –
replication of model coefficients – decisively
indicated that the model fitted to the first
half of junctions was falsified when applied
to the second half of junctions. A model
was fitted to the second half (370) of the
junctions and the coefficients compared to
those estimated in the model for the first half
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of the junctions (360). One of eight estimated
coefficients differed systematically (i. e. more
than random variation) between the models;
a second coefficient was also quite different in
value. The predicted number of accidents was
different for the two models and was in few
cases identical for any of the junctions. The
predictions made on the basis of the model
fitted to the first half of the junctions were for
all junctions different from those based on the
model fitted to the second half of the junctions.

All four criteria of falsification must be
satisfied to conclude that a model has not
been falsified. Since the fourth criterion
was clearly not satisfied, and the third only
partly satisfied, it is concluded that the model
developed for the sample of 360 junctions was
falsified when put to the test of predicting
the number of accidents in the sample of
370 junctions. This is a very sobering result.
When the predictions of a model fail in
a sample which is almost identical to the
sample used when fitting the model, it is
highly unlikely that the predictions would be
successful in a different sample. Indeed, it
seems likely that any multivariate accident
prediction model can only be regarded as a
unique statistical description of the data used
to fit the model and that it has no predictive
validity whatsoever.

10. Discussion

The conclusions stated above may appear to
be very discouraging. In fact, they are the
opposite. They imply that a new accident
prediction model has to be developed in
every case knowledge about the long-term
expected number of accidents for each unit of
observation in a sample is needed. This calls
for better data quality and extensive model
development. The research needed to serve
this end will produce better knowledge of the
associations between the number of accidents
and factors influencing this number. By
contrast, calibration and methods for transfer
of accident prediction models do not produce
new knowledge. These techniques merely
try to bypass the need for developing a new

accident prediction model by means of ad hoc
adjustments to an existing model.

Accident prediction models should be as
parsimonious as possible. The reason for
advocating parsimonious models, is that it
ought to be a goal of accident modelling to
confirm the existence of lawlike relationships
between important variables and the number
of accidents. One might think that the fact
that any accident prediction model is likely
to be valid only in the data set it was based
on, and that coefficients are likely to vary
from model to model, preclude the detection
of lawlike relationships. This is wrong.
The lawlike relationships are qualitative (or
semi-quantitative) and unlikely to ever be
quantified precisely. As stated in section 4,
the following lawlike relationships are likely
to hold for junctions:

L1: The sum of coefficients for entering
volume for all legs is greater than 1.

L2: The coefficient for major road entering
volume is greater than forminor road entering
volume.

L3: The values of the coefficients for
entering volume are roughly proportional to
the shares (proportions) of traffic entering
from the major and minor road but the
coefficient for traffic entering from the
major road has a smaller value than strict
proportionality implies and the coefficient
for entering volume from the minor road
has a greater value than strict proportionality
implies.

L4: There is a safety-in-numbers effect
for entering volume from the minor road,
implying that the coefficient increases less
than in proportion to the share (proportion) of
traffic entering from the minor road.

L5: An increase in the number of legs in
a junction is associated with an increased
number of accidents

L6: Higher speed limits in junctions are
associated with a higher number of accidents
than lower speed limits
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Table 7. Comparison of coefficients estimated in meta-analysis and for the complete data set

Meta‐analysis Model for complete data
Term Estimate Standard error Estimate Standard error Difference in

estimates
SE (difference) Ratio difference/SE

(difference)
Constant ‐10.8768 0.7359 ‐10.9073 0.7585 0.0305 1.0568 0.0289
Ln(entmaj) 0.6898 0.0757 0.7223 0.0762 ‐0.0325 0.1074 ‐0.3021
Ln(entmin) 0.3262 0.0567 0.3038 0.0565 0.0224 0.0801 0.2794
Legs 0.9014 0.1551 0.8618 0.1598 0.0396 0.2227 0.1780
Dum50 ‐0.7194 0.1778 ‐0.6811 0.1804 ‐0.0383 0.2533 ‐0.1511
Dum60 ‐0.1195 0.1444 ‐0.0657 0.1456 ‐0.0538 0.2051 ‐0.2623
Dum70 0.4513 0.1754 0.3929 0.1784 0.0584 0.2501 0.2335
Dum90 ‐0.3099 0.4600 ‐0.2018 0.4679 ‐0.1081 0.6561 ‐0.1648

L7: Any design element that adds complexity
to a junction is associated with a higher
number of accidents.

The existence of these relationships can only
be confirmed by numerous replications of
studies including an identical set of variables.
The findings of studies based on the same
set of variables can be synthesised by means
of meta-analysis. However, bias may be
introduced into meta-analyses of studies not
including the same variables. The reason
for this, is that the values of the coefficients
for the variables different studies have in
common are influenced by the inclusion or
exclusion of the variables studies do not have
in common. This can be seen by comparing the
coefficients for traffic volume betweenmodels
1-4 in Table 2.

On the other hand, meta-analysis based
on models containing the same variables –
identically defined and measured can be very
informative. The models fitted to the first and
second halves of the randomised data set were
synthesised and compared to a model fitted to
the complete data set. Each coefficient was
assigned the following statistical weight:

Statistical weight =
1

SE2

SE is the standard error of each estimate.
Table 7 compares the synthesised coefficients
based on meta-analysis with the coefficients
estimated for the complete data set.

The synthesised coefficients are very close
in value to those estimated for the complete
data set. Asmore data sets are synthesised, the

standard errors will become smaller. Formal
synthesis of the findings of many studies will
drown out the unique characteristics of each
data set, which necessitate developing a new
model for each new data set. The unique
models remain unique to each data set and
have a very high probability of falsification if
applied to predict the findings of a new data
set. This fact, however, does not prevent the
development of general knowledge by means
of formal research synthesis.

11. Conclusions

The main results of the study presented in this
paper can be summarised as follows:

1. Hundreds of accident predictionsmodels
have been developed. It is likely
that none of them have been tested
empirically.

2. To test a model empirically is to use it
to predict the number of accidents in an
out-of-sample data set, i.e. a different
data set from the one used to develop the
model.

3. Empirical tests of accident prediction
models have a very high probability of
falsification of the models. This reflects
the fact that any model is only a sample-
specific statistical description of the data
set it has been fitted to.

4. No accident prediction model is likely
to be valid for any other data set than
the one it was fitted to. Methods for
calibration and model transfer cannot
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eliminate the need for developing a new
model for each new data set.

5. The fact that models are unique to each
data set does not prevent developing
general knowledge of the relationships
between the number of accidents and
variables influencing the number of
accidents. Meta-analysis of models based
on the same set of variables is an effective
tool for developing general knowledge.
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