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As new automated features enter the automotive market, we need methods to assess their 
safety in a rapid, proactive, and iterative way. The traditional way of relying on crash 
statistics does not meet these needs. An alternative is to use extrapolation techniques 
designed to deal with rare events, such as extreme value theory (EVT). In this paper, we 
applied EVT to estimate the risk of collision with and without adaptive cruise control 
(ACC) during steady-state car following. We defined a Bayesian regression model to 
estimate the parameters of the Weibull distribution for block maxima (BM) of the brake 
threat number (BTN). We used a small, open-access dataset collected during a platooning 
experiment on a test track, with and without ACC. We found that it is extremely unlikely 
that the use of ACC will result in a rear-end crash under normal car-following 
circumstances, a finding consistent with the general expectation that ACC is safer than 
manual driving. However, we found that the relative risk of ACC was actually higher than 
the human control baseline. The reason is that the baseline represents a cautious driving 
style which may not be typical of the driving style in real traffic. Nonetheless, EVT can 
measure the expected safety benefit of a vehicle system even without a large dataset. The 
BTN was an appropriate safety metric to compare automated and manual driving modes, 
as it accounts for specific brake behavior and performance. 

1. Introduction   

Adaptive cruise control (ACC) is a common advanced dri-
ver assistance system (ADAS) that increases comfort by re-
ducing the effort of continuous longitudinal control. ACC 
can also reduce the exposure to critical lead-vehicle situa-
tions (e.g., rear-end crashes) by keeping a fixed headway to 
the vehicle in front. Without ACC, drivers may often tail-
gate so that they would not have enough time to evade 
a conflict (General Motors Corporation Research and De-
velopment Center, 2005, Ch. 8; Malta et al., 2012, Ch. 4). 
ACC is considered safer than manual control because it re-
duces the frequency of short (less than 1 s) headways (Gen-
eral Motors Corporation Research and Development Center, 
2005, Ch. 8; Malta et al., 2012, Ch. 4), but the collision risk 
has not been quantified. 

It is still unclear how to measure the real-world safety 
benefits of systems like ACC directly. Traditionally, safety 
benefit analyses have relied on crash statistics to estimate 
safety without automation (e.g., Otte et al., 2003). However, 
crashes are rare and highly varied, because they are the re-
sult of specific driver-vehicle-system dependencies (Cough-
lin et al., 2011), various failure mechanisms (Singh, 2015), 
and the co-occurrence of unexpected events (Victor et al., 
2015), so it would take too long to collect a representative 
sample and design timely countermeasures. Safety assess-

ments of automated systems have mainly focused on au-
tonomous emergency interventions (e.g., autonomous 
emergency braking [AEB]) rather than on sustained au-
tomation (e.g., convenience systems like ACC). In fact, cur-
rent crash databases may be insufficient to investigate the 
effects of current (and newer) ADASs, because not only is 
the market penetration of these systems still low, but their 
operation during a crash is not reported (Otte et al., 2003). 

As more consumer vehicles are equipped with ADASs 
(and more sophisticated forms of automation), we need a 
method to rapidly and proactively evaluate the vehicles’ 
safety, based on the systems’ technological risks and ben-
efits (Blumenthal et al., 2020), and improve them accord-
ingly (Åsljung et al., 2017). Of the multiple alternatives to 
using crash data, the most common is to use near-crashes 
(or other crash surrogates) derived from naturalistic driving 
data (e.g., Dingus et al., 2006) in combination with simu-
lations (e.g., Kusano & Victor, 2022; Olleja et al., 2022). 
Near-crashes are convenient as they are more frequent than 
crashes, but their generalizability is debated (Dozza, 2020; 
Tarko, 2012). We used Extreme Value Theory (EVT; Coles, 
2001), which extrapolates extreme, rare events (crashes) 
from a set of observations of the process under study (nor-
mal driving). This approach does not require the direct ob-
servation of conflicts, as it relies on normal driving data. 
Further, EVT requires much shorter observation periods 
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than other methods, so it could quantify the safety benefit 
of ADASs as they are deployed, accelerating their develop-
ment. 

Multiple studies have applied EVT to estimate the col-
lision risk under human control (e.g., Åsljung et al., 2017; 
Farah & Azevedo, 2017; Orsini et al., 2020, 2021; Song-
chitruksa & Tarko, 2006; Tarko, 2012); a few have investi-
gated highly automated driving (e.g., Kamel et al., 2022). In 
this paper, we compare rear-end crash frequency in vehicles 
under human control to those using ACC. Rear-end crashes 
are the most common type of conflict, and ACC is the most 
common automated feature installed in consumer vehicles 
that could prevent them. 

2. Methods   

2.1. Data source    

Data come from OpenACC (Anesiadou et al., 2020; 
Makridis et al., 2020), an open-access dataset created to 
benchmark ACC during normal operation in high-end con-
sumer vehicles. The data were collected over multiple test-
track and open-road tests. Metrics such as speed, acceler-
ation, and headway were recorded from the CAN bus and 
additional sensors. The dataset was sampled at 10 Hz. 

We selected the data from the test-track experiment at 
AstaZero in Sweden, because it was the only experiment in 
OpenACC that included a human control baseline, which 
was necessary to assess the relative safety benefit of driving 
with automation. The experiment consisted of a platoon of 
five vehicles on a traffic-free rural road. The first vehicle 
in the platoon occasionally perturbed the other vehicles by 
setting a different ACC target speed. Across trials, the fol-
lowing vehicles remained the same, but changed their rela-
tive order in the platoon. There was no other traffic on the 
test-track. The participants were professional drivers. 

In all trials but one, the ACC’s time headway was set at 
the lowest (about 1.2 s); for consistency, we discarded the 
single trial that had the ACC headway set to high (above 2 
s). While the headway setting may seem aggressive, users 
generally prefer a short time gap to reduce cut-ins (General 
Motors Corporation Research and Development Center, 
2005, Ch. 4). We also kept only those driving segments 
where the minimum speed of the whole platoon was more 
than 30 km/h (the typical minimum operating speed of 
ACC) for at least 10 s, in order to assess steady-state (under 
regime) driving. Finally, the platoon was broken down into 
independent pairs of vehicles (e.g., the second and third ve-
hicles in the platoon became the leader and follower ve-
hicle, respectively) because we were interested in under-
standing rear-end crash scenarios rather than the effects on 
the whole platoon. We assumed that drivers would not an-
ticipate the lead-vehicle actions by looking further ahead in 
the platoon. Additionally, we did not study ripple (string) 
effects from the behavior of the following vehicle to the ve-
hicles behind. Overall, the amount of data we retained cor-
responded to approximately 888 km. 

Figure 1. Brake profile for leader and follower. Leader        
maintains acceleration; follower adapts to      

  after a delay    .  

2.2. Threat measure    

We used the brake threat number (BTN; Brännström et 
al., 2008) as a surrogate measure for lead-vehicle conflicts. 
BTN quantifies the brake effort needed to avoid a collision 
by comparing the minimum acceleration (maximum de-
celeration) required to avoid a collision ( ) and the 
minimum acceleration that the brake system is capable of 
( ): 

with BTN in the  domain. When BTN is greater than 
1, the collision cannot be avoided as the required brake ef-
fort exceeds the brake capacity. Because BTN depends on 
braking behavior and performance, it is an improvement 
over the classic time to collision (TTC) measure (Daniel 
Åsljung et al., 2016). 

We used a simplified brake profile. First, braking is ap-
plied after a delay  (Figure 1). Then, the acceleration de-
creases linearly with rate . The braking capacity saturates 
when it reaches  (Brännström et al., 2008). The specific 
ACC implementations and brake system characteristics of 
the vehicles in OpenACC are not publicly available. There-
fore, we used reference values from current regulations or 
previous studies (Table 1). We did not include an AEB sys-
tem to focus solely on the effect of ACC. 

We computed BTN in the scenario where the lead vehicle 
maintains its current acceleration while the vehicle behind 
adapts its acceleration to avoid a collision (Figure 1). The 
BTN has a closed-form solution in some specific cases 
(Åsljung et al., 2017; Brännström et al., 2008). Here, we 
computed it as the solution to an optimization problem in-
stead. This approach is more computationally demanding 
but more flexible, as it allows both vehicles to have any 
(continuous or piecewise) brake profile (see Appendix). We 
computed the BTN for all vehicles in the platoon at every 
second, given the current kinematic state of the vehicles 
from the data (a 1 Hz frequency was chosen to reduce com-
putational cost). The time horizon was set to 30 s, to ac-
commodate non-critical events. All BTN values less than 
or equal to zero indicate that the situation did not require 
braking and thus were excluded. 
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Table 1. Brake system parameters.    

Parameter Driving mode Value Reference 

Manual 1.15 s (UNECE, 2022, p. 30) 

ACC 0.1 s (Brännström et al., 2008, p. 104) 

Manual -12.9 (UNECE, 2022, p. 30) 

ACC -12.9 (UNECE, 2022, p. 30) 

Manual -7.74 (UNECE, 2022, p. 30) 

ACC -7.74 (UNECE, 2022, p. 30) 

Deceleration rate  and maximum capacity  are constant across driving modes, independent of assistive system. 

Figure 2. Example of block maxima, from time series        
chunked into blocks of fixed length. Within each block,          
the max value (BM, marked in red) is extracted. Blocks           
shorter than 75% of the desired length are discarded.          

2.3. Extreme values analysis     

The values for BTN were analyzed with EVT to estimate 
the probability of a rear-end crash. The premise is that 
car-following is a set of circumstances that has a non-zero 
probability of ending up in a conflict, so that when the 
process is repeated enough times it will result in a crash. 
The assumption is that car following is a stationary process 
(Coles, 2001, Ch. 1). Crashes that are the result of excep-
tional lead-vehicle situations (e.g., a lead vehicle slamming 
on the brakes suddenly) are not considered in this analysis, 
as these situations would violate that assumption; the sta-
bility of the prevailing car-following process would be dis-
rupted, and the situation would not be compatible with an 
EVT analysis. 

2.3.1. Block maxima    

We chunked the BTN time series into 7 km-long blocks. 
This block length was chosen to minimize temporal depen-
dency (Coles, 2001, Ch. 5) and retain the most data (Fig-
ure 2). Then, we extracted the maximum BTN value in each 
block (block maxima [BM]). On average, trials were about 
21 km long, resulting in about 3 BM for each vehicle in each 
trial. Blocks shorter than 75% of the desired block length 
(which can occur at the very end of the trial) were dis-
carded. 

2.3.2. Statistical model    

The BM were grouped by driving mode (ACC vs. human 
control). Typically, the probability distribution of BM is in-
ferred with the Generalized Extreme Values (GEV) distribu-
tion, which unites the reverse Weibull, Gumbel, and Fréchet 
families (Coles, 2001, Ch. 3). Given the known boundary 

conditions of BTN in the domain , we opted for the 
positively defined Weibull distribution, instead of fitting 
the more general, yet more complex, GEV distribution. 
While the Fréchet distribution (a GEV component that is 
lower-bounded) was considered, its characteristic long 
right tail does not accurately represent our data. Overall, 
the Weibull distribution was more suitable for our analysis, 
although it somewhat deviates from traditional EVT appli-
cations. The Weibull distribution has two parameters (scale 

 and shape ; Bürkner, 2022) and the formula 

To estimate when a crash will occur, we estimated the prob-
ability that the critical value for BTN would be exceeded in 
the block ( ). To do so, we inferred the parameters 
of the Weibull distribution that best mimicked the obser-
vations (Coles, 2001, Ch. 3). The inference was performed 
for each driving mode using a Bayesian regression model 
(Bürkner, 2021): 

The regression was set up to infer the mean (expected 
value)  of the Weibull distribution instead of the scale pa-
rameter directly. The factor  was the driver {0: Hu-
man; 1: ACC} associated with each data point, . We 
used the index-variable approach to assign a unique inter-
cept to each parameter for the specific driving mode, so 
we could assign priors to each mode independently (McEl-
reath, 2019, Ch. 5). We set vague (but regularizing) priors to 
prevent divergences 

The data were analyzed using R (v. 4.2.1; R Core Team, 
2022) and the package brms (v. 2.18.0; Bürkner, 2016). We 
sampled 25 Markov Chain Monte Carlo (MCMC) chains with 
the No-U-Turn-Sampler (NUTS; Hoffman & Gelman, 2014), 
with 10k samples each; 5k were used as warm-up and then 
discarded, resulting in a total of 125k samples available for 
analysis. The MCMC chains (i.e., posterior distributions) 
carried all the information used for statistical inference. 

The goodness of fit for each model was assessed by com-
paring the posterior predictive distribution against the em-
pirical data (posterior predictive check; Gabry et al., 2017). 
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Table 2. Aggregated descriptive statistics for spacing      
and time headway (THW) for all vehicles in the          
platoon  

Metric 
Driving 

mode 
Median 89% PI 

Spacing 
(m) 

Manual 38.1 19.7 – 75.6 

ACC 21.4 16.0 – 32.4 

THW (s) Manual 2.08 1.31 – 3.58 

ACC 1.16 0.93 – 1.57 

We used three types of plots to inspect the outcome of the 
statistical modeling. The first plot compared the modeled 
Weibull’s PDF with the normalized histogram of the data. 
The second plot compared the complementary cumulative 
distribution function (CCDF) to the complementary empiri-
cal CDF of the data ( ). Given an ordered sample of 
BM, , the  is (Coles, 
2001, pp. 208, 36) 

The third plot was the return plot (Coles, 2001, Ch. 3). The 
return plot can be used to check the model against the em-
pirical observations, and it is also the traditional way of in-
terpreting the outcome of an EVT analysis. The return plot 
shows the return levels (RLs) against return periods (RPs), 
often in the log scale. That is, it shows the value that is 
likely to be exceeded, on average, once in that RP (Coles, 
2001, Ch. 3). The empirical  is the observed , while 
the empirical  is calculated as 

The estimate for the  was computed from the regression 
model for a range of  (typically a logarithmic series), via 
the inverse CDF of the Weibull distribution: 

where  can be interpreted as the probability of the 
event occurring in any given block. In other words, the 
probability  that an event will exceed a certain threshold in 
any given block means that, on average, the event will oc-
cur once every  blocks. In summary, for the empirical re-
turns, we calculated the  associated with a specific , 
while for the modeled returns, we calculated the  asso-
ciated with a specific . 

The statistics for the posterior distribution were derived 
from manipulating the samples in the MCMC chains with 
the support of the packages tidybayes (v. 3.0.7; Kay, 2024) 
and tidyverse (v. 2.0.0; Wickham et al., 2019). For conve-
nience, the probability distribution of a parameter/metric 
was summarized by the median and the 89% percentile in-
terval (PI; McElreath, 2019, Ch. 3). 

Figure 3. Aggregated distribution for spacing and time       
headway for all vehicles in the platoon        

Figure 4. Distribution of brake threat number (BTN)       
grouped by driving mode     

Table 3. Summary of estimated parameters for the       
Weibull distribution   

Metric Driving mode Median 89% PI 

Manual 0.15 0.14 – 0.17 

ACC 0.24 0.22 – 0.26 

Manual 3.06 2.32 – 3.90 

ACC 2.50 2.14 – 2.90 

Manual 0.14 0.12 – 0.15 

ACC 0.21 0.20 – 0.23 

3. Results   

In general, ACC maintained a much shorter headway to 
the lead vehicle than manual driving (Table 2; Figure 3). 
The BTN distributions have the same median (equal to 0.0), 
but the one for ACC has a slightly longer tail (89% per-
centile: ACC = 0.10; Human = 0.05) compared to manual 
control. No BTN was greater than 1, regardless of the dri-
ving mode (Figure 4). 

The Bayesian regression model yielded a set of parame-
ters for the Weibull distribution (Table 3) that mimicked 
the observed BM for each driving mode well (Figure 5). 
The model was a plausible representation of the empirical 
data and it could thus be used for extrapolation (i.e., to 
estimate when  and a crash occurs). The BM were 
higher under ACC than they were under human control 
(Figure 5). The expected probability of , 

, was  under ACC. 
Under manual control, it was many orders of magnitude 
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Figure 5. Posterior predictive check; Plausible Weibull      
distribution densities overlaid on observed block       
maxima (BM) histogram    

Figure 6. Probability of observing a specific brake       
threat number (BTN); Solid line shows expected        
complementary of the cumulative distribution      
function (CCDF) from the model; width shows        
uncertainty. Circles show observed block maxima (BM).        
Vertical dashed line indicates critical BTN above which         
collision is unavoidable.    

lower ( ; Figure 6). The inverse of this probability 
is the expected  for a crash. Under normal operation 
of the ACC, according to the model a crash would occur 
within  blocks (equivalent to  km), and the 
lower bound of the PI is  blocks (  km; Figure 7). 
Under manual control, a crash would occur within 
blocks (  km), and the lower bound of the PI is 

 blocks (  km). As shown in Figure 7, the esti-
mate for RP plateaus quickly in the manual control case. 

4. Discussion   

Is ACC safe? In general, yes. Based on the data and the 
model, the results suggest that a potential crash under ACC 
has a low probability (i.e., a long distance between colli-
sions, in the order of a trillion km). Is ACC safer than man-
ual driving? Sometimes; it depends on what manual driving 
style we are comparing it to. Our results, which exclude 
other active safety systems that may be installed in mod-
ern cars, indicate that the BTN of a car with ACC alone is 
higher (i.e., there is higher risk) than that of a car under the 
control of a cautious human. This finding contradicts the 
general expectation that ACC is safer than manual driving 
(Malta et al., 2012, Ch. 4). 

Figure 7. Return plot: Estimated return period (RP)       
before the block maxima (BM) value (return level [RL])          
is observed. Solid line shows expected return; width         
shows uncertainty. Circles are empirical returns.       
Dashed horizontal line indicates critical brake threat        
number (BTN) above which collision is unavoidable.        

4.1. Human control    

Previous studies of real-world traffic have found that dri-
vers often follow a lead vehicle too closely; the distance is 
too short for their typical perception-reaction time. Drivers 
need more than 1 s to brake (Lamble et al., 1999; Markkula 
et al., 2016; Summala, 2000; Summala et al., 1998), and the 
proportion of  s can be much higher under hu-
man control than with ACC (General Motors Corporation 
Research and Development Center, 2005, Ch. 8; Malta et al., 
2012, Ch. 4; (Varotto et al., 2022), (Morando et al., 2019)). 
Thus, the potential safety benefit of an ACC that main-
tains adequate headway is considerable. However, the typi-
cal THW in the manual control data in the OpenACC exper-
iment was around 2 s (the value recommended in driving 
manuals in many European countries Technical Group Road 
Safety, 2009). Consequently, the safety benefits of ACC in 
the OpenACC experiment were less pronounced or absent. 

Driving is largely a self-paced task; drivers actively adapt 
their driving to maintain a comfortable safety boundary 
(Engström & Aust, 2011; Summala, 2007). During routine 
driving we may follow a vehicle too closely—intentionally 
because we are in a hurry or unintentionally because we 
don’t recognize that we are, in fact, too close (Taieb-Mai-
mon & Shinar, 2001). In contrast, professional drivers in a 
controlled experiment may be more careful than usual be-
cause they are aware it is a test. This is one possible rea-
son why our estimates are much more conservative than 
those of Åsljung, Nilsson, and Fredriksson (2017), despite 
using a similar method. In addition, Åsljung, Nilsson, and 
Fredriksson (2017) used a much larger FOT dataset (250.000 
km vs. 888 km); they used professional drivers as well, but 
the data were from real traffic. Their best estimate was 

 km between collisions under manual control, which 
is close to the rear-end crash frequency in manual driving 
in motorways in Europe (around  km; Dobberstein 
et al., 2022, para. 6.2). The results of Åsljung, Nilsson, and 
Fredriksson (2017) are more precise than ours, but their pa-
per also highlights how some modeling decisions can af-
fect the results, particularly with extrapolations over long 
time horizons. Depending on the method used to fit their 
models, Åsljung, Nilsson, and Fredriksson (2017) obtained 
an estimate of  –  km between crashes. Ultimately, 
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Åsljung, Nilsson, and Fredriksson (2017) chose the model 
that yielded an estimate closer to the one from crash statis-
tics, but without that reference, we would not know which 
model is best. 

Because of the cautious manual driving and the absence 
of any external perturbations of the traffic flow, the condi-
tions leading to our results are not the same as those we 
would observe in regular traffic; the difference is many or-
ders of magnitude (  vs.  km in Dobberstein 
et al., 2022, para. 6.2). However, despite the small dataset, 
the model was a good fit to the data (Figures 5, 6, and 7), 
and the Bayesian model provided a more complete account 
of uncertainty than maximum likelihood estimates (Coles, 
2001, Ch. 9). While the modeling approach shows promise, 
the available data were not representative of real-world dri-
ving behavior. The validity of the results depends on the 
quality of the input, thus, as with most techniques, agree-
ment with the observed data is a necessary but not suffi-
cient condition to justify long-term extrapolation (Coles, 
2001, Ch. 3). 

Crashes in manual driving happen for many reasons, in-
cluding human factors such as inattention and distraction 
(National Center for Statistics and Analysis, 2022; Singh, 
2015). As the professional drivers were careful, it is likely 
that the data in OpenACC did not include those human 
crash-contributing factors. In the future, one could supple-
ment the data by simulating driver impairment with dif-
ferent braking parameters (cf. Table 1). For example, when 
everything else is kept constant, the driver’s response time 
is the most important parameter in our braking model. 
Thus, one could include a response time distribution and 
modulate it for different driver states. In this work, for con-
venience and reduced computational cost, we assumed that 
all drivers would recognize a hazard and start braking with 
a constant reaction time (see also UNECE, 2022, p. 30). 
However, analyses of crashes in naturalistic driving reveal 
that drivers’ responses depend on the urgency of the situa-
tion and their visual behavior, rather than being a fixed re-
action time (Engström et al., 2022; Markkula et al., 2016; 
Summala, 2000). Moreover, many crashes happen because 
of a mismatch between drivers’ attention and a rapidly 
evolving traffic event (Summala, 2000; Victor et al., 2015). 
Thus, in future work, visual behavior could also be included 
(see Bärgman et al., 2015), but the computational demand 
would increase drastically. 

4.2. Adaptive Cruise Control (ACC)      

There is little information on using EVT for the safety 
estimation of systems such as ACC. Most of the literature 
has focused on autonomous emergency interventions (e.g., 
AEB). Unlike ACC, AEB is usually active by default and is 
available in most new cars. ACC, instead, is a convenience 
system that drivers can choose to buy and use (or not). Even 
though the estimated crash frequency of ACC is higher than 
defensive manual driving, it is still extremely low—lower 
than the collision frequency of manual driving on motor-
ways, which are the typical operational design domain of 
ACC (  vs.  km in Dobberstein et al., 2022, 
para. 6.2). ACC can, in fact, increase comfort and safety. It 

is also possible that the higher BM values under ACC in our 
analysis are the consequence of a deliberate delay in the 
system intended to prevent discomfort by avoiding adjust-
ing the speed too frequently. 

A platoon is an excellent driving situation for gathering 
data for an EVT analysis, since it provides data on pro-
longed car-following from multiple vehicles in a single 
short session. While there is less interference (e.g., due to 
sensor noise or cut-ins) on a test track than in real traffic, 
we can assume that ACC operates similarly in both environ-
ments. Moreover, the existing sources of interference may 
become less frequent during normal use as technology im-
proves. 

4.3. Brake Threat Number (BTN)      

Many different threat metrics can be used as crash sur-
rogates (Li et al., 2021; Westhofen et al., 2022). The most 
common one—especially in the EVT literature—is the TTC, 
although previous research has shown that BTN is better 
than TTC for studying rear-end crashes in manual driving 
(Åsljung et al., 2017). It is our opinion that proximity mea-
sures such as THW and TTC do not provide a useful com-
parison between automated and manual driving, since they 
do not account for differences in braking behavior and per-
formance. For example, based on TTC alone, ACC would be 
less safe than manual driving just because it keeps a shorter 
headway (Figure 3); such analysis would ignore the fact that 
ACC is arguably more consistent and rapid at adjusting the 
distance to the lead vehicle than humans are. The advan-
tage of BTN is that it also incorporates a braking profile, 
capturing some of the unique features of human control 
(e.g., brake reaction time; Table 1). Ideally, the brake profile 
would include additional system interventions (e.g., trig-
ger warnings or autonomous interventions based on the de-
veloping lead vehicle conflict) which would not be possible 
with TTC alone. 

Analyses based upon BTN may need to be complemented 
with other metrics. For example,  could be used to esti-
mate the potential injury outcome of a crash (Bärgman et 
al., 2015; Kusano et al., 2022), since BTN does not provide 
this information. Unfortunately,  exists only when a col-
lision has occurred, so it does not allow extrapolating from 
near-crashes to crashes, as BTN does. Nonetheless, future 
work could improve EVT models by including , to esti-
mate extreme severity crashes based on observed ones. 

5. Conclusions   

We estimated the crash risk with ACC compared to hu-
man control using EVT and data from a platoon experiment 
on a test track. EVT offers an advantage over the traditional 
approach to analyzing crash data since it can be applied to a 
relatively small dataset collected in a short time. The surro-
gate safety metric BTN enabled a valid comparison between 
human control and automation by incorporating specific 
aspects of braking behavior and performance. Our findings 
indicate that the crash risk under ACC is much lower than 
the crash risk for manual driving reported at the European 
level. However, the crash risk of the human control baseline 
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from our experimental data was even lower; as a result, EVT 
estimated a higher risk for ACC than for the manual driving. 
This discrepancy in the evaluation of ACC is due to the de-
fensive driving style in the manual driving data from the 
OpenACC dataset, which does not reflect the general be-
havior observed in real traffic. Future work could apply the 
method presented in this paper to data from more realistic 
driving situations. This study investigated the safety bene-
fits of manual control and ACC in isolation, since there were 
no other active safety systems in the car. In addition, hu-
man factors such as driver impairment and negative behav-
ioral adaptations to automation, which could be detrimen-
tal to safety (Rudin-Brown & Parker, 2004; Smiley, 2000; 
Victor et al., 2018), were also excluded. 
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Appendix. Optimization problem to compute      
Brake Threat Number (BTN)     

Figure 8. The cost function to minimize is the squared         
spacing and relative velocity (∆v) with respect to the          
vehicle ahead.   

The cost function  to be minimized (Figure 8): 

where  is the spacing between the vehicles and  is their 
relative velocity. The only parameter to optimize (mini-
mize) is : 

That is, we want to find the acceleration value that avoids 
a collision ( ) while taking full advantage of the avail-
able stopping distance between the following and the lead-
ing vehicle. 

Velocity ( ), traveled distance ( ), and spacing ( ) are ob-
tained via numerical integration (trapezoidal method) of 
the kinematic equations for linear motion. The leading ve-
hicle has initial conditions: , , and accelera-
tion is kept constant, . The following vehicle has 
initial conditions: , , and the acceleration 
is modulated according to the brake profile: 

For all vehicles,  is constrained to positive values: 
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