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Abstract: The advent of autonomous technologies necessitates a deeper understanding of pedestrian
behavior and safety in environments where pedestrians need to interact with driverless vehicles
(DV). Our study explores how pedestrians perceive and react to DVs compared with Human-Driven
Vehicles (HDV), focusing on objectivemeasures such as gap acceptance (GA) and psychophysiological
indicators like Electro-dermal Activity (EDA). Structured in three phases, the study comprises a
preliminary questionnaire to gauge public perception, followed by immersive virtual reality (VR)
simulations that mimic real-world traffic scenarios within a VR environment, and concludes with a
post-experiment survey. The simulation experiment was designed to analyze pedestrian responses to
varying traffic scenarios developed using DVs and HDVs, measuring EDA to assess emotional and
stress responses leading to changes in the gap acceptance behavior. The study employed hypothesis
testing to assess DV’s impact on pedestrians’ psychophysiological reactions that can lead to changes in
pedestrian behavior. This study also explored the effect of education level and perception of pedestrians
towards automation technology that may influence outcomes. The analysis of EDA showed higher
stress levels in scenarios involving DVs measured using the Galvanic Skin Response component. This
result heightened stress response may be attributed to the unpredictability and novelty of DVs. The
analysis with gap acceptance (GA) time revealed significant differences in GA times across traffic
scenarios. Pedestrians exhibited longer GA times with DVs than HDVs, suggesting cautious crossing
behavior. Our results underscore the impact of traffic scenarios on pedestrian behavior and stress levels,
highlighting the influence of driverless technology on pedestrian dynamics.
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1 Introduction

The rapid development and deployment of autonomous
technology marks a transformative leap in surface
transportation, promising enhanced road safety and
efficiency. However, as these technologies become
increasingly common in urban landscapes, the interface
between driverless vehicles (DV) and traditional road
users, especially pedestrians, emerges as a critical area
of concern. Pedestrians traditionally rely on non-
verifiable cues such as eye contact, hand and body
gestures to gauge the driver’s yielding intentions and
make crossing decisions. Such interactions are nuanced
and deeply embedded in societal norms, where subtle
gestures can indicate whether it’s safe to cross or
to wait (Bennett et al., 2001; Dey & Terken, 2017).
However, the transition to DVs disrupts this traditional
dynamic, as the direct human element in the driving
seat in vehicle control is absent. This absence poses
significant challenges to pedestrian safety and decision-
making processes. Pedestrians’ ability to interpret
vehicle’s yielding intentions without human drivers
becomes less predictable, potentially increasing the risk
of crashes (Rasouli & Tsotsos, 2019; Dey & Terken,
2017).

While DVs can optimize vehicle stopping time and
adhere to traffic laws, the lack of human-like interaction
modalities necessitates new communication between
DVs and pedestrians to ensure safety (Lundgren et al.,
2017). Research indicates that DVs must convey their
intentions clearly and in a manner that pedestrians can
instinctively understand (Rasouli & Tsotsos, 2019).
These new communication methods must be integrated
seamlessly into the traffic system to maintain safety
and efficiency. Given the variability in pedestrian
behavior influenced by age, gender, and familiarity
with technology, understanding pedestrian interaction
with DVs becomes even more crucial (Deb et al.,
2017b).

While significant progress has beenmade in developing
autonomous technologies, the empirical research on
pedestrian interactions with DVs remains limited. This
gap is particularly notable in studying pedestrians’
complex behaviors and safety perceptions in real-world
encounters with DVs. While existing research often
concentrates on the technical dimensions of DVs, such
as sensor accuracy and navigation algorithms, there
is a critical underrepresentation of the human factors
that influence pedestrian responses (Ezzati Amini
et al., 2021). This absence of empirical data is

a significant oversight, particularly in mixed-traffic
environments where DV and human-driven vehicles
(HDVs) coexist. To bridge this gap, it is essential
to undertake comprehensive empirical studies that
capture real-time interactions between pedestrians and
DVs. By doing so, we can craft more effective
communication strategies and safety protocols that are
attuned to all road users’ varied needs and behaviors.

Understanding stress levels and their variations among
pedestrians in interactions with DVs is crucial for
multiple reasons. Recent studies highlight the use of
Electro-dermal Activity (EDA) to measure variations
in skin conductance, reflecting emotional states like
stress and providing insights into trust levels towards
automated systems (Braithwaite et al., 2013). Findings
indicate that lower trust correlates with higher EDA
levels, revealing significant interactions between
psychological responses and trust in technology (Costa
et al., 2001). GA times are a critical metric in traffic
engineering that measures the time interval a pedestrian
is willing to accept before crossing the street after
a vehicle has passed. If pedestrians tend to wait
longer before crossing in front of DVs, this could have
substantial implications for signal timing design and
overall traffic flow efficiency. For instance, longer GA
times may necessitate adjustments in signal phases at
intersections to accommodate longer pedestrian wait
times and prevent pedestrian congestion, especially in
urban areas with heavy traffic flows.

Moreover, changes in pedestrian behavior driven by
interaction with DVs require planners and engineers
to rethink current pedestrian models that inform the
design of crosswalks, signaling systems, and safety
measures (Palmeiro et al., 2018). These changes are
essential for enhancing pedestrian safety and ensuring
the smooth integration of DVs into the current traffic
system. Suppose DVs inherently cause pedestrians
to hesitate or alter their crossing strategies. In that
case, infrastructure and signal timings must evolve
accordingly to mitigate any negative impacts on traffic
circulation and pedestrian throughput (Zhanguzhinova
et al., 2023; Figueroa-Medina et al., 2023).

Virtual reality (VR) is a powerful tool for studying
complex dynamics in a controlled, safe environment.
By simulating realistic traffic scenarios and allowing
researchers to manipulate variables such as vehicle
type, speed, and frequency, VR simulation can provide
valuable insights into pedestrian decision-making
processes without the risks associated with real-
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world testing. Additionally, VR can simulate rare
or dangerous situations that are difficult to observe
safely in reality, such as close interactions between
pedestrians and DVs. This capability makes VR
indispensable in developing and testing new traffic
technologies, allowing researchers to collect detailed
data on pedestrian physiological and behavioral
responses. This data can then inform more accurate
pedestrian models and lead to the development of DV
systems that are better attuned to human behaviors
and expectations, ultimately enhancing safety and
efficiency in pedestrian-vehicle interactions.

This paper explores the interactions between
pedestrians and DVs, examining the transformative
impact of removing human drivers from vehicle-
pedestrian interactions, which traditionally rely on
non-verbal communication cues. Our research
investigates how pedestrian behaviors, such as GA
times and electro-dermal responses measured through
Galvanic Skin Response (GSR), adapt in various
traffic scenarios involving DVs, HDVs, and mixed
conditions. We aim to understand the decision-
making processes of pedestrians, the influence of their
educational backgrounds and safety perceptions, and
their physiological stress levels in different traffic
environments. Utilizing VR simulations, this study
provides a controlled yet realistic setting to explore
these interactions. By addressing gaps in current
research, particularly the limited understanding of real-
time pedestrian responses to DVs, this study seeks
to enhance pedestrian safety and predictability in
increasingly automated urban landscapes. Ultimately,
our findings are intended to inform innovations that
could significantly reduce pedestrian fatalities and
injuries, contributing to the broader discourse on
human-DV interaction. The results of this research
can support the development of innovative solutions
to ensure the harmonious coexistence of autonomous
and non-autonomous elements within urban traffic
ecosystems.

2 Literature review

Pedestrians typically engage in three main types of
interactions with drivers at crosswalks: eye contact,
body gestures, and hand waving (Kitazaki & Myhre,
2015). Depending on the driver’s response, these
cues influence their decision to cross the roadway
immediately or wait. The decision-making about
crossing a road is demanding, even with human

drivers, due to dense traffic and driver attentiveness.
Interactions will be more complex with DV. The
concept of gap acceptance refers to how pedestrians
assess gaps between themselves and oncoming vehicles
before crossing the road. When making a crossing
choice, pedestrians may look for gaps between their
reference (crossing) point and the approaching vehicle.
If they think an available gap is sufficient for them to
cross the road before the next vehicle arrives at the
reference point, they will likely accept that gap and
begin crossing; otherwise, they will reject it. Accepted
gaps in interactions with HDV rarely seem shorter
than 2 seconds and are more often at least 3 seconds
long to enhance safety (Chandra et al., 2014). This
variability highlights the complex nature of pedestrian
behaviors and the need for tailored approaches in
DV programming to accommodate different pedestrian
strategies.

Interactions between pedestrians and autonomous
systems pose unique challenges, particularly in
communication and yielding intention prediction.
Pedestrians might struggle to determine whether the
vehicle is stopping or not, which complicates traditional
cues like eye contact or gestures (Palmeiro et al., 2018;
Rezwana et al., 2023). The absence of a human driver
in a vehicle complicates these interactions further,
demanding new forms of communication to ensure
safety and clarity in pedestrian decisions (Kitazaki
& Myhre, 2015). Visual and auditory signals from
DVs are crucial in communicating intentions to
pedestrians (Rezwana et al., 2023). Innovations
in this area include using displays, lights, and
projectors to convey vehicle behaviors, such as
stopping or yielding (Furuya et al., 2021; Semcon,
2024; Subramanian et al., 2024). However, the
effectiveness of these signals depends heavily on public
familiarity and understanding, suggesting a need for
widespread education and standardization to prevent
miscommunication and potential crashes (Fridman
et al., 2017; Clamann et al., 2017).

The exploration of DV-pedestrian interactions has been
advanced by using VR), which overcomes several
limitations of real-world testing, including the high
costs and time requirements of building fully functional
DV prototypes and testing them under real traffic
conditions, the regulatory need for a test driver in such
setups, and the significant physical risks to participants
involved in real-world tests. VR addresses these
issues and provides excellent control over experimental
conditions, allowing for the easy replication of studies
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and the generation of extensive behavioral data through
tracking systems (Feng et al., 2020; Slater & Wilbur,
1997). In recent years, the use of VR in research
has surged, particularly with the advent of VR head-
mounted displays (HMDs), which offer a high level
of immersion, improved ergonomics, and affordability.
Notably, reactions in VR settings often mimic real-life
responses, and the walking speeds observed in virtual
environments align with those in the real world (Deb
et al., 2017a). However, discrepancies remain, such
as participants’ tendency to engage in riskier behaviors
due to the absence of real danger, their overestimation
of vehicle speeds, and their acceptance of shorter
time-to-contact with approaching vehicles (Holländer
et al., 2019; Bhagavathula et al., 2018; Feldstein
& Dyszak, 2020). Despite these challenges, the
use of VR for studying pedestrian behavior, DV
safety development, and DV external communication
research continues to grow, yielding insights that, while
sometimes limited by technical constraints like the VR
systems’ narrow field of view and lower resolution,
are invaluable to the field (Mahadevan et al., 2019;
Stanney et al., 2003). Recent research has significantly
enhanced our understanding of interactions between
driverless vehicles (DVs) and pedestrians, contributing
to the development of safer autonomous transportation
systems (Schneider&Bengler, 2020; Nascimento et al.,
2019; Colley et al., 2019).

One approach to evaluating users’ trust in automated
systems is by examining variations in skin conductance,
a measure of the skin’s ability to conduct electricity,
which reflects changes controlled by the sympathetic
nervous system known as Electro-dermal Activity
(EDA) (Christie, 1981; Braithwaite et al., 2013). EDA
fluctuations are influenced by emotional states like
stress, likely due to increased sweating (Costa et al.,
2001; Santarcangelo et al., 2012). Recent research
has explored the relationship between trust, fear, and
EDA, finding that lower levels of trust are associated
with higher EDA levels (Boucsein, 2012). For
instance, researchers have examinedGSR in correlation
with human trust levels. Khawaji et al. (2015) found
significant impacts of trust and cognitive load on the
EDA of individuals using a text-chat platform. Authors
found that average GSR and average GSR peak values
are significantly affected by both trust and cognitive
load in the text-chat environment.

Additionally, a study by Akash et al. (2018) assessed
participants’ trust in a sensor detecting road obstacles
through trials where they were asked to trust or

distrust sensor readings. Feedback was provided
to validate their trust, and EDA was measured to
create a trust model, highlighting these physiological
markers as effective real-time indicators of trust in
automation (Akash et al., 2018). Similarly, Morris
et al. (2017) investigated trust and EDA responses in
simulated autonomous vehicle environments during
perceived risky and safe driving conditions. They
reported that risky conditions led to lower trust and
higher EDA among participants (Morris et al., 2017).
Overall, EDA is a reliable measure of emotional
arousal and provides insights into participants’
emotions, actions, thoughts, and perceptions in various
studies (Sequeira et al., 2009; Zhanguzhinova et al.,
2023). The literature discusses using physiological
measures like EDA to gauge pedestrians’ emotional
responses and trust levels when interacting with DVs
and HDVs. These measures are crucial for assessing
the psychological impacts of introducing driverless
vehicles into urban traffic systems and designing
interventions that enhance pedestrian trust and safety
in increasingly automated environments.

In reviewing the existing literature, several vital
insights emerge that are directly relevant to our study.
First, traditional pedestrian-vehicle interactions rely
heavily on non-verbal cues such as eye contact and
gestures, which are inherently absent in interactions
with DVs. This gap necessitates the development of
new communication methods to ensure pedestrian
safety and confidence when navigating traffic
environments dominated by DVs. Previous research
highlights the potential of visual and auditory signals
from DVs yet underscores the need for these signals
to be widely understood and standardized to be
effective. Moreover, using VR simulations has proven
invaluable in studying pedestrian behavior under
controlled conditions. However, real-world studies
remain essential to capture the full complexity of these
interactions and validate VR findings.

Our study builds upon these findings by employing
VR simulations to measure pedestrian responses,
including gap acceptance and electro-dermal activity,
across varied traffic scenarios featuring DVs, HDVs,
and mixed traffic. This study also investigated
how educational background and familiarity with
automation influence pedestrian behavior and stress
responses while interacting with DVs within a
simulated environment. The study result is expected
to enhance our understanding of pedestrian-DV
interactions and contribute to designing safer, more
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intuitive communication strategies and intersection
designs to significantly reduce pedestrian injuries and
fatalities in urban areas.

3 Methodology

This study conducted a pedestrian simulation
experiment in VR to understand the interactions
between pedestrians and DVs while crossing a
roadway. The data collection was structured into
two phases: a questionnaire and a VR simulation
experiment, each aimed at an in-depth analysis
of the impact of DVs on pedestrian behavior and
their physiological responses. The questionnaire
was conducted to capture general attitudes and
specific beliefs about AVs, setting a context for the
experimental findings. This survey helps to understand
participants’ baseline perceptions and knowledge
regarding autonomous systems before engaging in
the VR simulation experiment. In the second step,
participants were engaged with VR simulations crafted
using RFpro software to emulate real-world traffic
environments. The VR simulation allowed participants
to walk within the VR environment as pedestrians,
reacting across different traffic scenarios, including
no vehicle, HDV, DV, and a mix of DVs and HDVs.
The mixed traffic conditions are designed with 50% of
vehicles being driverless and 50% being human-driven.
Vehicles were uniformly generated and controlled,
ensuring that both DVs and HDVs were evenly
distributed within each trial. This uniform distribution
allowed controlled comparisons between pedestrian
responses to DVs and HDVs. The interaction with
the pedestrians was random in mixed traffic scenarios.
Concurrently, psychophysiological data such as EDA
was recorded using electro-dermal sensors to assess
the emotional and physiological impacts of interacting
with various traffic scenarios.

A four-way signalized intersection, characterized by a
two-lane major street and a one-lane minor street in
each direction, was designed within a VR environment
for this study, as illustrated in Figure 1. The intersection
was a semi-actuated signalized intersection. The
pedestrian phasewas coordinatedwith the signal phases
to ensure safe crossings. Specifically, the pedestrians
were directed to cross theminor road during a dedicated
pedestrian phase (protected phase) when the traffic
signals on the minor road were red for vehicles,
providing a safe crossing opportunity. The pedestrian
phase was programmed to be activated only when a

pedestrian was detected, mimicking real-world semi-
actuated signal operation. During this phase, the
vehicles were halted on the minor road, ensuring that
pedestrians had the right of way and could cross without
conflict. Additionally, the vehicles on the major road
were allowed to proceed, as they did not interfere with
the pedestrian crossing on theminor road. On theminor
road, the lane configuration allows for shared left and
right turn movements with the through lane, whereas
the major road includes a dedicated left-turn lane. In
this VR simulation, pedestrians are specifically directed
to cross the minor street. Parking spaces are provided
on both sides of the minor road, each measuring 10
feet wide and each lane 12 feet. The participants faced
vehicles approaching from all travel directions while
crossing the minor road. The vehicles were simulated
to approach from various directions, adding complexity
and realism to the scenarios.

Consequently, participants in the simulation
are required to navigate a crossing distance of
approximately 44 feet during each trial. The scenarios
are designed as 700 vehicles/hour/lane on the major
road and 400 vehicles/hour/lane on the minor road
in the daytime, 400 vehicles/hour/lane on the major
road, and 200 vehicles/hour/lane on the minor road
for nighttime. In the simulation, the turn percentages
were based on realistic urban traffic patterns. Vehicles
making right or left turns at the intersection were evenly
distributed between the lanes, with approximately 50%
of the traffic continuing with through lanes and the
remaining 50% split between right (30%) and left turns
(20%). The vehicle speeds were designed to be no
more than 25 mph. The time headway between the
vehicles was 3–4s. In this study, the behavior of both
DVs and HDVs was programmed to adhere to standard
traffic rules, meaning that there were no aggressive
driving maneuvers, such as speeding or abrupt lane
changes. The vehicles followed consistent yielding
behavior, particularly at pedestrian crosswalks, to
minimize variability in pedestrian responses due to
driver unpredictability. This setup closely mimics
realistic urban traffic conditions to assess pedestrian
behavior in a controlled yet similar real-world situation.

The study consists of 7 traffic scenarios implemented
within the VR environment using various traffic
scenarios and lighting conditions, as presented in
Table 1. The trial was defined as the event of a
participant crossing the designated minor street within
a simulated environment. As noted in Table 1, the
participant in each scenario had to complete four trials,
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Figure 1 Intersection design in VR (a) major road, (b) minor road, (c) HDV & DV approaching the participants

except the no-vehicle scenario (Scenario 1), which
had only two trials. Scenario 1 was conducted at
the beginning of the VR simulation experiment to
familiarize the participant with the VR environment.
This results in 26 trials per participant across the
different scenarios. Throughout the simulation, all
vehicles are programmed to adhere strictly to traffic
signs, ensuring consistent conditions for each trial.
Pedestrian movement is limited within the study
intersection (crosswalk + sidewalk). The participants
experienced each of the scenarios randomly except
Scenario 1. Scenario 2 to Scenario 7 happened
randomly to all the participants.

The setup used to conduct the VR experiment is
presented in Figure 2. The VR simulation software was
integrated with Simulation of Urban Mobility (SUMO)
to enhance these scenarios by managing the behavioral
logic of traffic, supporting complex interactions among
diverse road users. Participants used a head-mounted
device in a controlled VR experiment for the immersive
VR experience. GSR sensors were attached to
each participant’s fingers of the non-dominant hand
that measured the electrical conductance, with two
reusable electrodes attached tomonitor the participants’
physiological responses. The VR setup simulates
realistic intersection scenarios with varying traffic
conditions to observe pedestrian behaviors and stress
levels while interacting with vehicles at crosswalks.
The study involves 41 participants from the University
of Connecticut and the surrounding community, who
completed the study over a month. Demographic,
perspective, education level, and behavioral data were
collected through surveys, and VR-based responses
were analyzed to study pedestrian dynamics in DV
contexts.

4 Data preparation

Before analyzing the data, we ensured the integrity
and synchronization of various data sources. Video
footage from GoPro cameras was aligned with VR and
electro-dermal sensor timestamps, correcting any time
discrepancies for accurate correlation. The complete
simulation experiments resulted in 1 066 trials. The
corridor where the participant walked in our VR
lab, marked with reflective markers every five feet,
facilitated precise tracking of pedestrian movement.

Gap acceptance was measured using RFpro screen
recordings, using the formula G=Tv - Tp, where Tp is
the time a pedestrian starts crossing, and Tv is when
the next vehicle reaches the crosswalk. This data
helped determine the safety margins pedestrians use
when interacting with vehicles. The raw data from the
EDA sensors, including the GSR indicator of EDA,
were downloaded in CSV format and consolidated
into a unified dataset. Only the GSR data was used
for this study. There is potential for sudden hand
movements to introduce noise into EDAmeasurements,
particularly through pronounced peaks that are not
necessarily related to the visual stimuli or events in
the VR experiment. To mitigate this, noise reduction
techniques were applied to the raw EDA data, including
low-pass and high-pass filters, to remove artifacts and
unrelated electrical noise. Furthermore, the EDA data
were synchronized with video recordings to account
for motion-related peaks, ensuring that the peaks
considered in our analysis were more likely linked to
experimental stimuli rather than extraneous movement.
The GSR data underwent normalization to reduce inter-
individual variability, ensuring consistent participant
baseline levels.
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Table 1 Scenario design

Scenarios Traffic scenarios Intersection type
No vehicle HDV Mixed traffic DV Signalized Day Night Trials

Scenario 1 3 3 3 2
Scenario 2 3 3 3 4
Scenario 3 3 3 3 4
Scenario 4 3 3 3 4
Scenario 5 3 3 3 4
Scenario 6 3 3 3 4
Scenario 7 3 3 3 4

Figure 2 Development of a VR environment using rFpro and SUMO

5 Data analysis

5.1 Finding from questionnaire responses

The questionnaire responses demonstrated significant
awareness of autonomous technology, with 97.62%
of respondents acknowledging their awareness,
although only 5% considered themselves highly
knowledgeable. About two-thirds (66.67%) expressed
positive views toward DVs, while the remainder
showed skepticism or neutrality, reflecting mixed
feelings about DV adoption. Safety perceptions
also varied, with nearly 30% considering roadway
crossings as risky, illustrating diverse attitudes towards
pedestrian safety in DV contexts. The participants’
educational backgrounds varied, with over 44%
holding graduate or professional degrees, suggesting
a highly educated sample that might influence their
understanding and interactions, particularly regarding
technology acceptance. Additionally, about 28% had
some college education, and 18% had high school
education, providing a broad range of insights into
how different educational groups perceive and interact
with technologies like DVs. Communication habits
indicated that 67.5% of participants use non-verbal cues
like hand gestures when crossing streets, underscoring
the importance of visible communication for safety.

Most respondents (60%) felt that technology enhances
life quality, though 25% were neutral, showing some
ambivalence about technology’s pervasive role. The
survey data provides a comprehensive view of public
awareness and perceptions of DVs, showing high
awareness but varying degrees of knowledge and
comfort with the technology. Younger participants
generally displayed more openness to DVs, while older
groups were more cautiously optimistic, focusing on
safety and ethical issues. These findings emphasize
the need to address realistic aspects of enhancing
public education on DVs and improve acceptance and
confidence in this emerging technology.

5.2 Exploration of stress level and gap acceptance

The bar plot on the left illustrates the mean GSR
values for the traffic scenarios. The plot shows that
GSR for DVs has the highest mean GSR value, at
4.72. GSR for HDVs has a significantly lower mean
GSR value of 2.58. For mixed traffic conditions, the
mean GSR value is higher than the GSR level during
HDV interaction but lower than the GSR level in DV
traffic, at 3.49. The GSR level for the no-vehicle
scenario has the lowest mean GSR value among all the
traffic conditions, at 1.45. This plot provides insightful
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findings regarding physiological responses about the
pedestrian responses towards DV. The data reveals
that interactions with self-driving vehicles generate the
highest GSR levels, suggesting significant arousal or
stress. This heightened response is likely due to DV
novelty, and perceived behavior ismost likely unknown
to the participant.

In contrast, scenarios involving HDVs show lower
and more variable GSR levels, implying moderate
stress or engagement. This variation could reflect the
more predictable nature of interactions. Mixed traffic
scenarios, a combination of DV and HDV, display
intermediate GSR levels, the 2nd highest GSR level.
The No vehicle scenario consistently shows the lowest
GSR levels, indicating minimal stress or engagement
and likely representing a baseline or resting state due to
the absence of any vehicle in the scenario.

Our analysis (Figure 3, right) also examined the average
GA times across three traffic scenarios—GA time for
DV, GA time for HDV, and GA time for Mixed traffic.
The results revealed that participants demonstrated the
longest GA times in scenarios with DVs, averaging
over 6 seconds, indicating a more cautious approach
than in other scenarios. Conversely, GA times for
HDVs averaged around 4 seconds, reflecting quicker
participant decision-making. The GA times were
slightly higher in mixed traffic conditions than in
HDV scenarios, but they were still notable for their
cautiousness.

The ANOVA results in Table 2 demonstrate significant
differences in pedestrian responses under various traffic
conditions, analyzed through GA times and GSR
levels. Regarding GSR levels, the data presented
an even more striking difference, with an F-value of
151.1 and a p-value less than 2e-16. This outcome
robustly supports the alternative hypothesis, indicating
significant differences in the emotional arousal or stress
levels among traffic scenarios. The highest GSR
levels were observed in DV scenarios, suggesting that
these scenarios induce higher stress or engagement
levels among participants. This elevated response
could be attributed to the unpredictability and newness
of interacting with autonomous technology compared
to more familiar and predictable HDV scenarios.
These insights highlight the significant impact of
different traffic scenarios on pedestrian behavior and
physiological responses. The analysis yielded an
F-value of 7.176 for GA times with a p-value of
0.001. This statistically significant result rejects

the null hypothesis, affirming that different traffic
scenarios influence the GA times of pedestrians. The
finding suggests that pedestrians tend to be more
cautious, exhibiting longer GA times, particularly in
DV scenarios. This behavior reflects a heightened
sense of caution, likely due to uncertainty or mistrust
towards the novel autonomous technology. The results
underscore the importance of considering these factors
in urban planning and policymaking, particularly as
cities integrate more autonomous vehicles into the
traffic mix. Understanding these dynamics can help
improve safety measures and pedestrian comfort in
increasingly automated traffic environments.

5.3 Visual exploration of GSR and gap acceptance
based on perception and education levels

A further investigation was conducted to explore
the difference between GA and GSR based on the
participants’ perception of safety. The bar plot
presented in Figure 4 provides significant insights into
GA times and GSR values across different traffic
scenarios—DVs, HDVs, and Mixed traffic—grouped
by participants’ perceptions of safety. This study
explored whether DVs are perceived as creating safety
issues when crossing roads. Regarding emotional
arousal measured by GSR, DV data showed higher
mean values for participants who perceive these
vehicles as unsafe (4.84) than those who view them
as safe (4.54). This increased arousal could reflect
a cautious response from individuals who harbor
safety concerns, potentially due to mistrust in DV
safety features. For HDVs, GSR values were similar
across different safety perceptions, highlighting a well-
established level of familiarity and trust. Mixed traffic
conditions yielded slightly higher mean GSR values
for participants who viewed the situation as unsafe,
suggesting that the complexity and unpredictability
of these environments demand higher vigilance and
engagement, especially when navigating interactions
between DV and HDV.

For DVs, the data reveals that participants who believe
DVswill not create safety issues recorded a lower mean
GA time of 6.39 seconds, compared to those who are
skeptical about DV safety, demonstrating higher mean
GA times of 7.27 seconds. These numbers suggest
that individuals with a positive perception of DVs will
likely allow smaller gaps when crossing, indicative of a
higher level of trust and comfort with this technology.
In contrast, GA times in HDV scenarios were relatively

8



Rezwana et al. | Traffic Safety Research vol. 9 (2025) e000080

Figure 3 GSR level based on different traffic conditions (left ) and gap acceptance (GA) time (right)

Table 2 ANOVA results for gap acceptance time and GSR level for test scenarios

Source Null hypothesis (H0 ) Alternative hypothesis (H1) F p
GSR level for
scenarios

No difference in GSR
levels among scenarios

GSR levels significantly vary across different
scenarios, with higher levels expected in more
complex traffic conditions

151.1 < 2e-16

Gap Acceptance
(GA) time for
scenarios

No difference in Gap
Acceptance (GA) times
among scenarios

GA times significantly differ across traffic
scenarios, with longer GA times expected in
scenarios perceived as riskier or more complex

7.176 0.001

Figure 4 GSR level (left) and gap acceptance time based on safety perspective (right )

consistent across perceptions, indicating a uniform
comfort level with traditional vehicles. The equal
distribution of DV and HDV in the mixed traffic
scenario may have contributed to the participants’
responses. In a 50% DV and 50% HDV environment,
pedestrians may rely more heavily on their familiarity
with HDVs despite their concerns about DVs. As
HDVs exhibit more predictable yielding behavior,
participants who are more familiar with and trust
HDVs might take quicker crossing actions, potentially
reducing their overall GA time in mixed traffic. This
effect could explain why the ‘Perception: Yes’ group—
despite their safety concerns about DVs—demonstrated
lower GA times than expected in mixed traffic. Mixed
traffic environments may introduce an additional

cognitive load due to the need to simultaneously assess
two different types of vehicle behaviors. Participants
concerned about DVs could be hyper-vigilant, as
reflected by their higher GSR values, but they might
also rely on the presence of HDVs to mitigate their
hesitation. This could lead to a quicker decision to
cross, particularly when they identify HDVs as part of
the traffic stream, thus lowering GA times compared
to a pure DV environment. These findings emphasize
improving and communicating DVs’ safety features to
bolster public perception and acceptance. Maintaining
a stable and trusted environment is crucial for HDVs. In
mixed traffic scenarios, enhancing vehicle-to-vehicle
communication and increasing public education on
interacting with diverse traffic types could improve
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safety perceptions and reduce the cognitive load on
pedestrians and drivers. Addressing technological
advancements and public perceptions of vehicle
safety is essential for fostering greater acceptance of
autonomous technologies. Such efforts are vital to
creating safer, more efficient roadway systems and
promoting an environment that nurtures trust and
comfort among all road users. This holistic approach
is critical in driving broader acceptance and integration
of emerging automotive technologies.

In Figure 5, The plots provided illustrate the influence
of education level on GA times and GSR across
different traffic scenarios, offering insights into how
education may affect perception and physiological
response in the context of autonomous vehicle (AV)
technology. Across all traffic scenarios, high school
degrees show the highest GSR levels, particularly
in DV traffic conditions (4.83 micro-siemens),
pointing to heightened stress in more complex traffic
environments. The overall GSR level shows a
decreasing value with the education level, showing that
when people are more educated, they have more trust
in technology. Participants with Graduate Degrees
consistently show higher arousal than Doctorate
holders, yet less than those with High School or Some
College education, implying moderate alertness except
in DV scenarios. The lowest GSR responses are
observed in doctorates, especially in HDV scenarios
(1.96 micro-siemens). This might reflect a more
relaxed or less engaged reaction, possibly due to higher
awareness of potential risks. The data suggests that
lower education levels correlate with more cautious
behavior and higher physiological responses in traffic
scenarios involving autonomous technologies.

This data shows the mean GA times for DVs,
HDVs, and mixed traffic conditions, segmented by
participants’ education levels. Notably, participants
with a Doctorate exhibit the longest GA times in all
scenarios, especially prominent in driverless traffic
conditions (8.21 seconds), suggesting a more cautious
approach, possibly due to the unfamiliarity of the
complexities involved with AV technology. Those
with a Graduate Degree also show longer GA times
across scenarios than participants with doctorates.
Interestingly, the most extended GA times are observed
among participants with SomeCollege education in DV
scenarios, indicating some impact of the education level
while interactingwith DV.However, GA timeswith the
participants with college degrees did not differ much
for HDV and mixed traffic scenarios. This pattern

could be attributed to unpredictability, potential risks,
and complexities associated with DVs among less
educated individuals. Conversely, those with higher
education may not perceive the same level of risk,
which is reflected in shorter GA times and lower GSR
levels.

Figures 3 and 4 show a general trend where higher
GSR (indicating stress or nervousness) correlates with
higher GA values, reflecting more cautious crossing
behavior as participants tend to take longer to cross
when stressed. However, Figure 5 presents an
unexpected outcome for the ‘some college degree’
group, which had the lowest GSR values across
traffic conditions, suggesting lower stress and a
corresponding expectation of shorter GA times. While
this held for HDV and mixed traffic conditions, in
the DV condition, this group exhibited the highest
GA value (8.21 seconds). This suggests that, despite
lower physiological stress, participants with ‘some
college degree’ may have been less familiar with or
trusting of DVs, leading to more cautious crossing
behavior. Their low GSR may reflect comfort in
the VR environment rather than trust in the DVs.
This highlights the complexity of pedestrian decision-
making in DV interactions, where GSR may not
fully capture the cognitive and psychological factors
influencing behavior.

Further research could explore the relationship between
familiarity with AVs, cognitive load, and pedestrian
behavior in such scenarios. This distinction highlights
the need for tailored public education strategies
that enhance understanding and safety practices
across all education levels, ensuring that all road
users can navigate new traffic technologies safely
and confidently. The findings also emphasize the
importance of addressing perceptual and physiological
responses in integrating AV technology to enhance
safety and acceptance among diverse demographic
groups.

This study utilized two-way ANOVA to investigate
how traffic scenarios, perceptions, and education levels
influence GA times and GSR levels. In Table 3,
significant differences were found in GA times among
different traffic scenarios, with an F-value of 7.034 and
a p-value of 0.00149, indicating that the type of traffic
scenario significantly affects pedestrian decision-
making. Perception also significantly influenced
GA times (F = 3.053, p= 0.01907), and there was
a significant interaction between traffic scenarios
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Table 3 ANOVA results for GSR level and gap acceptance time with perception and education levels

Source Null hypothesis (H0) Alternative hypothesis (H1) F p
GSR level for traffic scenario based on perception
Traffic scenario for
different GSR level

No difference in GSR
levels among scenarios

GSR levels significantly vary across different
traffic scenarios, with higher levels expected in
more complex or dense traffic conditions

149.418 < 2e-16

Perception No difference in GSR
levels by perception

GSR levels are significantly influenced by
participants’ perceptions of traffic complexity, with
higher GSR levels associated with perceived higher
risk scenarios

2.145 0.0486

Interaction between
GSR level and
perception

No interaction effect on
GSR levels with
perception

Interaction affects GSR levels with perception 3.341 0.0396

Gap Acceptance (GA) time for traffic scenario based on perception
Traffic scenario for
different GA time

No difference in GA
times among scenarios

GA times significantly differ across traffic
scenarios, with longer GA times expected in
scenarios perceived as riskier or more complex

7.034 0.00149

Perception No difference in GA
times by perception

Perceptions of traffic risk or complexity
significantly affect GA times, with longer times
associated with higher perceived risks

3.053 0.01907

Interaction between
GA time and
perception

No interaction effect on
GA times with
perception

Interaction effects GA times with perception 2.604 0.04878

GSR level for traffic scenario based on education level
Traffic scenario for
different GSR level

No difference in GSR
levels among scenarios

GSR levels significantly vary by traffic scenarios,
with distinct patterns emerging based on the
educational background of participants

81.761 < 2e-16

Education level No difference in GSR
levels by education
level

Education level significantly influences GSR
responses, with higher education levels potentially
associated with lower GSR levels in complex
traffic scenarios

5.681 0.00117

Interaction between
GSR and education
level

No interaction effect on
GSR levels with
education level

Interaction effects GSR levels with education level 3.442 0.04929

Gap Acceptance (GA) time for traffic scenario based on education level
Traffic scenario for
different GA time

No difference in GA
times among scenarios

Education level significantly influences GSR
responses, with higher education levels potentially
associated with lower GSR levels in complex
traffic scenarios

7.506 0.00104

Education level No difference in GA
times by education
level

Education level significantly influences GA times,
with higher education levels potentially associated
with lower GA times in complex traffic scenarios

3.302 0.02368

Interaction between
GA time and
education level

No interaction effect on
GA times with
education level

Interaction effects GA times with education level 2.023 0.04226
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Figure 5 GSR level based on education level (left) and gap acceptance time (right )

and perception (F = 2.604, p= 0.04878), suggesting
that individual perceptions can alter the impact of
traffic scenarios on GA times. For GSR levels,
significant differences were observed among the traffic
scenarios (F = 149.418, p< 2e-16), indicating varied
emotional responses to different traffic environments.
Perception significantly influenced GSR levels (F =
2.145, p= 0.0486), and the interaction between traffic
scenarios and perception was also significant (F =
3.341, p= 0.0396), suggesting that how individuals
perceive traffic scenarios can affect their physiological
responses. When examining GSR levels based on
education level, significant differences were found
both among the traffic scenarios (F = 81.761, p< 2e-
16) and across different education levels (F = 5.681, p=
0.00117). However, the interaction between education
level and traffic scenario was not significant. For GA
times based on education level, significant differences
were observed among traffic scenarios (F = 7.506,
p= 0.00104) and a marginal interaction effect (F =
2.023, p= 0.04226), suggesting a slight dependency
on the combination of these factors. These results
highlight that the type of traffic scenario and individual
characteristics, such as perception and education
level, significantly impact pedestrian behavior and
physiological responses. This comprehensive analysis
underscores the need to consider technological and
perceptual aspects to enhance the safety and acceptance
of autonomous vehicles.

6 Discussion

This study explores the complex interactions between
pedestrians and DVs in various traffic scenarios, using
VR simulations to provide a controlled yet realistic
environment. The analysis of pedestrian behavior,

particularly GA and GSR, offers valuable insights into
how different factors, such as education level and
perceptions of safety, influence pedestrian decision-
making and physiological responses. The GSR data
reveals higher stress levels when pedestrians interact
withDVs. This increased arousal indicates that DVs are
perceived as more stressful, likely due to uncertainty
about the vehicles’ behavior. In contrast, interactions
with HDVs resulted in lower GSR levels, reflecting
the familiarity and predictability of HDVs. The
mixed traffic scenario elicited intermediate GSR levels,
suggesting a combination of stress from the DVs and
comfort from the HDVs. The findings indicate that GA
data further supports these observations; pedestrians
exhibit longer GA times when interacting with DVs
compared to HDVs. This result of heightened caution
likely stems from the novelty and unpredictability
associated with DVs. In mixed traffic conditions,
where DVs and HDVs are present, GA times were
also longer, suggesting that DVs influence pedestrian
behavior even when traditional vehicles are also on
the road. This cautious approach aligns with previous
studies that highlight the need for pedestrians to
understand and trust the behavior of autonomous
vehicles.

Significantly, the study also examined the impact
of educational background and safety perceptions on
pedestrian behavior. Participants with lower education
levels showed higher GSR levels and higher GA times,
suggesting less familiarity with and trust in DVs.
Conversely, Participants with higher education levels,
particularly those with doctoral degrees, displayed
lowerGSR levels with the shortest GA times, indicating
a more analytical approach to making decisions. These
individuals likely have a deeper understanding of
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autonomous technology’s complexities and potential
risks, leading to more cautious behavior. Perceptions
of safety also played a crucial role. Participants
who viewed DVs as safe recorded shorter GA times
and lower GSR levels, indicating greater comfort and
trust in the technology. Those skeptical about DVs’
safety exhibited longer GA times and higher GSR
levels, reflecting their apprehension and stress when
interacting with autonomous vehicles.

These findings underscore the importance of public
education and effective communication strategies to
enhance the acceptance and safety of autonomous
vehicles. Educating the public about the behavior
and capabilities of DVs can help reduce stress and
improve trust, leading to safer interactions. Moreover,
standardizing communication methods between DVs
and pedestrians, such as using clear visual and auditory
signals, can help bridge the gap created by the absence
of human drivers.

7 Conclusions

The study provides critical insights into how
pedestrians interact with DVs and the factors
influencing their behavior and physiological responses.
The results highlight the cautious approach pedestrians
take when dealing with DVs, driven by the novelty
and perceived unpredictability of the technology.
Education level and safety perceptions significantly
impact pedestrian behavior, emphasizing the need
for tailored public education and communication
strategies to enhance trust and safety. As urban
environments increasingly integrate autonomous
vehicles, understanding these dynamics becomes
essential for designing safer and more efficient traffic
systems. By addressing the concerns and behaviors
identified in this study, transportation authorities
can develop better communication strategies and
educational programs, ultimately fostering a safer
coexistence between pedestrians and DVs. This
research lays the groundwork for future studies
to explore the interactions between pedestrians
and autonomous technology further, ensuring that
advancements in transportation benefit all road users.
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