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Abstract: Under the safe system approach, drivers will inevitably make mistakes and errors that
can contribute to crashes. Driver errors are widely cited as one of the critical reasons for crash
occurrence in safety literature. Despite universal acceptance, the discussion of their effects on crash
injury outcomes is limited. The primary objective of this study is to quantify the effects of driver
errors in the crash injury severity model at urban intersections. To obtain research objectives, driver
errors were categorized as sequential events in a driving task. Combinations of driver error categories
were created and ranked based on their odds-ratios with injury severity levels. Furthermore, driver
impairment was considered in combination with the driver error categories to explore the compounding
effects on crash consequences. Multiple ordered logit models were estimated to quantify the effect of
driver errors and their interactions with driver impairment on the crash injury levels at uncontrolled,
sign-controlled, and signal-controlled intersections. Improved model performance was observed when
driver error combinations were modeled along with traditional crash variables. The exploration of
multiple model formulations indicated that including driver impairment as an error category can yield
informative inferences from both theoretical and modeling perspectives. Appropriate countermeasures
were recommended for major contributing factors to improve intersection safety based on modeling
results. It is expected that this study can offer specific insights into explanatory variables and help
safety professionals to develop effective countermeasures.

Keywords: compounding effect, driver errors, error categorization, impairment, injury severity model

1 Background

Improving traffic safety in the roadway network is, and
will continue to be, one of the pivotal tasks on the
national transportation agenda due to the significant
social and financial implications of motor vehicle
crashes. National Transportation Research Nonprofit
(TRIP) estimated that fatal and serious traffic crashes
in the US in 2022 caused a total of $1.9 trillion
in the value of societal harm, which includes $465
billion in economic costs and $1.4 trillion in quality-

of-life costs (TRIP, 2023). Compared with 2014, there
was a 30% increase in roadway fatality in the US
in 2022 (NHTSA, 2024). Crashes resulting in major
injury and property damage also significantly increased
during the last decade. Therefore, it is paramount
for transportation agencies to identify contributing
factors related to crash injury severity and implement
effective safety countermeasures to minimize crash
consequences.
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To improve roadway safety conditions for all road
users, transportation agencies are now adopting the
Safe System approach. The principles of safe system
approach dictate that drivers will inevitably make
mistakes and errors that will contribute to crashes and
a proactive approach is needed to identify and address
safety issues. Contemporary crash injury severity
research has noted ample appropriate highlights on
contributing factors related to crash injury severity;
albeit some concerns and limitations regarding the
influence of driver behavior related factors remain
unaddressed. The role of human behaviors has been
widely recognized in a safety-critical system such
as a roadway transportation network (NHTSA, 2008;
Shaon, 2019; Rumar, 1985). Driver errors refer
to unsafe driving behaviors, driver limitations, and
physical conditions of the driver that lead to a crash.
Human ability, needs, limitations, and other human
characteristics can actively or passively influence
drivers’ decision-making capabilities and ability to
perform driving tasks. However, research on the impact
of driver errors on crash occurrences is limited. As
indicated by police records, driver errors can range
from a traffic infraction in which the driver is not
paying attention, to an intentional traffic violation
such as failure to yield or significantly exceeding the
speed limit (Shaon et al., 2018; Wang & Qin, 2015).
The National Motor Vehicle Crash Causation Survey
(NMVCCS) sponsored by NHTSA found that almost
94% of crashes are caused by driver errors (NHTSA,
2008). Using the same dataset, NHTSA published
another report noted that driver errors can be attributed
to about 96% of intersection-related crashes (Choi,
2010).

The major obstacle regarding exploring the effect of
driver errors on crash events is the unavailability of
driver behavior related information. Conventional
roadway safety databases only cover a small fraction
of a large number of elements that define human
behavior while driving (Mannering et al., 2016).
Standard procedures for collecting driver behavior
data also do not exist, as highway agencies are
not obligated to gather such information for safety
management systems. As defined in Econometrics,
the unavailability of relevant contributing factors
including driver errors were considered as the source of
unobserved heterogeneity in previous safety research
and usually modeled as a random error in crash
modeling (Mannering et al., 2016). Information of
driver errors during a crash event can be obtained by

reviewing a crash report, including police officers’
judgments and witness accounts. However, a
structured approach is needed to explore the underlying
mechanism of error-prone situations.

Representative theories have been proposed along
with established taxonomies from the physiological,
cognitive, and information processing perspectives
regarding human errors in fields such as aviation
and railways (CAA, 1998; Baysari et al., 2009). A
comprehensive review of human error categorization
including driver error can be found in the study
conducted by Stanton & Salmon (2009). Several
safety studies used the driver error taxonomy developed
by Treat et al. (1979) where driver errors were
categorized into recognition, decision, performance,
and non-performance errors to errors to help understand
when, where, and why drivers make mistakes and how
we can prevent them (NHTSA, 2008; Shaon et al.,
2018; Wang & Qin, 2015). For example, Wang &
Qin (2015) noted that there is a potential correlation
due to observed and unobserved factors between driver
errors, crash type, vehicle damage, and injury severity.
But these studies did not consider the concurrence of
multiple errors. Shaon & Qin (2020) developed 16
driver error combinations considering the concurrence
of multiple driver errors and explored the effect of
different driver error combinations on crash injury
outcomes in rural segment-related crashes. The authors
noted that complex driver error combinations with
the concurrence of multiple driver errors tend to
be involved in more severe injury crashes. The
authors also pointed out that the incorporation of
driver error combination can significantly improve
model performance indicating driver errors as a major
contributor to crash severity outcomes. However, there
has been only a handful of studies that investigated
the effect of driver errors on crash occurrences and
resulting injury severities. Further investigation was
recommended to better understand the concurrence of
driver errors and their impact on crash events.

The growing aspiration to understand the influence
of driver errors can be perceived from the amount
of research effort devoted to analyzing the effect of
driver impairment on crash events. Impaired driving
has been identified as one of the major traffic safety
problems in existing safety literature (Ye & Lord,
2014; Moskowitz & Florentino, 2000; Behnood &
Mannering, 2017). Alcohol and drug tend to influence
driver’s vision, drowsiness, perception-reaction time,
and drivers’ performance which significantly increases
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the probability of getting involved in a more severe
crash event (Moskowitz & Florentino, 2000; Behnood
& Mannering, 2017). Previous safety studies mostly
investigated the impact of driver impairment as a
surrogate measure in crash injury severity modeling
by interpreting the inference of impairment variable
as a probability to be involved in risk-taking driving
behavior such as exceeding posted speed limit, drowsy
driving, ability to control vehicle, etc. However,
it is not always true that only drivers that are
alcohol or drug impaired will make mistakes while
driving. Investigating the interactions between driver
impairment and driver error may provide valuable
insight to understand the effect of driver impairment on
crashes as well as driver errors.

Driving behaviors are a critical component in
intersection-related crashes due to traffic rules in
effect, intersection control types, and interacting
traffic movements at the intersection. More than 50%
of the combined total roadway fatalities and injury
crashes occurred at intersections in the US (NHTSA,
2023). Intersections typically have an increased risk of
more severe crashes due to a larger number of traffic
conflict points that exist as two or more roadways
intersect. Intersections are also the areas where
streams of both motorized and non-motorized road
users interact. As a result, research efforts have been
devoted to intersection areas examining contributing
factors related to crashes and injury outcomes. Devlin
et al. (2011) explored the effect of driver errors in
serious causality crashes that occurred on intersections
in Western Australia. Authors noted that the effect
of driver errors is different for different intersection
control types. The common driver errors at signalized
intersections include higher driving speed, selecting an
inappropriate gap, running a red light, and choice in
the dilemma zone whereas failing to yield the right-
of-way and inaccurate approximation of the speed of
approaching vehicles during a turn are predominant
at uncontrolled intersections include (Devlin et al.,
2011). Research has shown that crash injury outcomes
are influenced by intersection control types, driver
demography, vehicle, roadway, and environmental
characteristics (Morgan & Mannering, 2011; Yasmin
et al., 2014; Qin et al., 2013).

The safe system approach emphasizes incorporating
driver-related factors in developing proactive roadway
safety analysis procedure. Based on the above
discussion, it is evident that driver error and
impairment has been unanimously considered as

primary contributors to crash occurrences and resulting
injury outcomes in previous safety literature. Despite
the ubiquitous influence of driver error, researchers
have started incorporating driver errors in crash data
modeling in recent years. Moreover, the exploration of
the compounding effect of driver errors and impairment
on intersection-related crash outcomes is limited. The
unavailability of standardized method of collecting
and processing driver error information resulted in
limited studies evaluating the effect of driver errors.
Additionally, due to the interaction between road
users, traffic rules, and control types, intersections are
prone to driver errors. Thus, it will be beneficial to
explore the compounding effect of driver errors and
driver impairment on crash injury severities occurred
at intersection to fill the existing knowledge gap.

This study attempts to explore the effect of driver errors
on crash injury severity levels for urban intersection-
related crashes by categorizing driver error information
collected from crash records. Combinations of driver
error categories were generated to explore their effect
on the crash outcome. The driver error combinations
were further expanded by including their interactions
with driver impairment to understand the influence of
impairment on both driver errors and injury severity
outcomes. Considering the effect of driver errors
and impairment, injury severity modeling results may
provide specific insights into explanatory variables and
help researchers and safety professionals to develop
cost-effective countermeasures.

2 Data collection and processing

Intersection-related crashes that occurred in
Wisconsin between 2011 and 2015 were collected
from the WisTransportal data hub maintained by
TOPSLAB (Parker & Tao, 2006). Deer-related and hit-
and-run crashes were removed from the crash dataset
as the driver-related information for these crashes were
not available. To quantify the impact of driver errors,
crashes were further categorized in uncontrolled, sign-
controlled, and signal-controlled intersections (Wang
& Qin, 2015; Devlin et al., 2011). Specific driver
actions in each crash event were extracted from the
MV4000 database (Wisconsin DoT, 1998). There is
a list of 14 driver actions from which the reporting
police officer identifies the driver action(s) associated
with a crash in MV4000 crash report as indicated in
Table 1. As each crash can be associated with multiple
driver actions frommultiple drivers, there can be a large
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number of combinations of driver actions available in
the study dataset which can be difficult to incorporate
in a quantitative injury severity model. Moreover,
a structured approach by categorizing driver actions
can be beneficial in quantifying the impact of driver
errors on crash injury severity. The taxonomy used to
categorize driver errors is presented in Table 1. Please
refer to the study conducted by Shaon & Qin (2020) for
a detailed overview of the driver errors related factors
collected from Wisconsin crash reports.

Based on the error categorization taxonomy developed
by Treat et al. (1979), driver actions during a
crash event were grouped into recognition, decision,
performance, and non-performance errors. However,
non-performance errors cannot be directly considered
as a driver error category as the driver condition
(disability, driver’s health condition) cannot be
controlled. Thus, the non-performance error category
was excluded in this study. The categorization of driver
errors follows a sequence of information processing
during driving. While driving, a driver needs to detect
and identify a hazard, decide what to do, and execute
driving task accordingly. Recognition error refers to all
the driver factors that may lead to a lack of awareness
or failure in the recognition of hazardous situations.
A driver’s decision on what to do leads to decision
error, whether it is a decision after detecting a hazard
or a decision while driving. A reckless decision such
as ‘exceeding the speed limit’ may result in a crash
without an imminent hazard. In the same sequence,
if a decided maneuver is not properly performed, are
categorized as performance error.

As drivers may make several sequential errors that
resulted in a crash, one crash event may involve
multiple driver error categories. It is also possible that
none of the driver errors are involved in a crash event.
Based on the three driver error categories used in this
study, there can be 8 possible combinations of driver
errors (3 C0 + 3C1 + 3C2 + 3C3 = 8, where C represents
combination). Although previous studies considered
driver impairment as a surrogate for drivers making
mistakes, it was not considered as a driver error in the
error categorization taxonomy developed by Treat et al.
(1979). To understand the effect of driver impairment,
driver impairment was considered as a driver error
category to understand the compound effect of driver
impairment and other driver error categories in this
study. Incorporating driver impairment within driver
error combinations can lead to another additional 8-
levels of driver error combination which represents

the occurrence and/or concurrence of driver errors
under impairment. Each error combination (ECi)
was designated using an initial letter coding system
(recognition [R], decision [D], performance [P], and
impairment [I]. The no driver error category was
represented using the letter ‘O’. For example, a driver
failed to yield to another driver while driving over
the speed limit. This case represents a combination
of recognition and performance errors, denoted as
‘RP’. An example of interaction with the impairment
category can be a driver who was under the influence of
alcohol while driving, talking on the phone, and failed
to keep the vehicle under control on a horizontal curve,
coded as ‘RPI’. The occurrence of impairment without
any driver errors was coded as ‘OI’.

To develop injury severity models, The KABCO
scale of injury severity was further categorized
into three levels—major injury (K+A), minor injury
(B+C), and no injury (O) to ensure that a sufficient
number of observations is available in each injury
severity level crash (Shaon, 2019; Shaon & Qin,
2020). Four categories of explanatory variables
were considered: driver characteristics, roadway,
environmental factor, and crash characteristics. A
study conducted by NHTSA using NMVCCS data
found that turning left and right, and crossing over are
the most common pre-crash events at an intersection,
whichwere also included in the study data (Choi, 2010).
Table 2 provides the summary statistics of explanatory
variables.

3 Exploratory analysis

An exploratory analysis was conducted to understand
the dependence between driver error combinations
and crash injury severity levels. In a previous
study, Shaon & Qin (2020) proposed an odds-ratio
estimate to explore the correlation between driver
error categories and crash injury severity. Following
the methodology proposed by Shaon & Qin (2020),
the odds of major injury with specific driver error
combinations were estimated to explore the effect of
driver error combinations on injury severity levels.
Table 3 presents the association between driver error
combinations and injury severities. In Table 3, the
odds of major injury with ECi indicate the probability
of major injury crashes compared with non-major
injury (minor+no injury) crasheswhenECi driver error
occurs. The odds of injury crashes with driver errors are
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Table 1 Taxonomy used to categorize driver errors (Shaon & Qin, 2020)

Error category Examples Wisconsin criteria
Recognition error Inadequate surveillance;

internal distraction;
external distraction;
inattention

Inattentive driving

Decision error Too fast for conditions;
too fast for curve;
false assumption of other’s action;
illegal maneuver;
misjudgment of gap or other’s action;
following too closely;
aggressive driving behaviors

Too fast for condition;
exceed speed limit;
disregard traffic control;
following too close

Performance error Overcompensation poor directional control;
panic/freezing;
other performance errors

Improper overtake;
improper turn;
failure to keep vehicle under control;
left of center;
unsafe backing;
failure to yield

Non-performance error Sleep;
heart attack;
other non-performance errors

Disability;
driver condition;
others

Impairment Alcohol-impaired;
drug-impaired

Involve alcohol;
involve drug

estimated using the following equations:

OR of ECi =
OMj Inj (ECi)

OMj Inj (ECj)
(for all j ̸=i)

(1)

OMj Inj (ECi) =
NMj Inj C (ECi)

N (Mn+PDO) C (ECi)
(2)

OMj Inj(ECj)
(for j ̸=i)

=

∑Mj inj C

−
∑Mj Inj C

(ECi)∑(Mn+PDO) −
∑(Mn+PDO)

(ECi)
(3)

Where:

OR= odds ratio;

OMjInj(ECi) = odds of major injury with ECi;

NMjInjC (ECi) = number of major injury crashes with
ECi;

N (Mn+PDO)C(ECi)= number of (minor + PDO) crashes
with ECi;∑Mj Inj C= total of major injury crashes;∑(Mn+PDO)= total of (minor + PDO) crashes.

Interesting results can be observed for driver error
combination with the impairment. The estimated

odds ratios for driver errors-impairment combinations
occupied the rank from 1st to 6th across all
intersection control types despite their low frequency
in occurrence. For example, DP, a combination
of decision and performance error ranked 8th in
uncontrolled intersections. When a driver makes a
DP error while impaired, the odds ratio jumped from
8th position to 2nd position. It is possible that drivers
can make the same mistake with a larger magnitude
while impaired. A chi-square test was conducted to
test the statistical dependence between the driver error
combinations and injury severity levels. The critical
chi-square value with 15 degrees of freedom at a 5%
level of significance is 43.77. The estimated chi-square
values for urban crash severities among 16 driver
error combinations are 506.22, 482.79, and 638.62
for uncontrolled, sign-controlled, and signal-controlled
intersections, respectively. The chi-square test results
indicate that the driver error combinations and crash
injury severities are not statistically independent across
intersection control types. These results show the
evident influence of driver error on crash injury
severity. Therefore, the influence of driver error
needs to be considered while developing crash severity
models.
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Table 2 Summary statistics of explanatory variables

Variable Description Count
Uncontrolled Sign-controlled Signal-controlled

‘K+A’ Major injury crashes 2.08% 2.14% 1.9%
‘B+C’ Minor injury crashes 29.15% 32.49% 34.82%
O No injury crashes 68.77% 65.37% 63.28%
Driver characteristics
Gender Female 15 691 (44.9%) 15 492 (48.83%) 27 441 (45.7%)

Male 19 219 (55.1%) 16 233 (51.17%) 32 591 (54.3%)
Age Young driver (< 25 years) 10,668 (30.6%) 8 966 (28.26%) 17 071 (28.4%)

Middle age (25–65 years) 20 862 (59.7%) 18 268 (57 58%) 36 887 (61.5%)
Old driver (> 65 years) 3 380 (9.7%) 4 491 (14.16%) 6 074 (10.1%)

Vehicle type Passenger car 29 257 (83.8%) 27 290 (86.02%) 50 593 (84.3%)
Motorcycle 630 (1.8%) 224 (0.71%) 445 (0.7%)
Light truck 3 744 (10.7%) 3 217 (10.14%) 6 248 (10.4%)
Heavy truck 1 279 (3.7%) 994 (3.13%) 2 746 (4.6%)

Safety-restrained No 3 072 (8.8%) 2 874 (9.06%) 4 689 (7.8%)
Yes 31 838 (91.2%) 28 851 (90.94%) 55 343 (92.2%)

Roadway Factors
Horizontal curve No 29 359 (84.1%) 30 481 (96.08%) 57 885 (96.4%)

Yes 5 551 (15.9%) 1 244 (3.92%) 2 147 (3.6%)
Vertical curve No 31 318 (89.7%) 28 625 (90.23%) 55 998 (93.3%)

Yes 3 592 (10.3%) 3 100 (9.77%) 4 034 (6.7%)
Posted speed Low speed (≤ 25 mph) 16 038 (45.9%) 22 046 (69.49%) 15 163 (25.3%)

Med. speed (26–50 mph) 17 205 (49.3%) 9 209 (29.03%) 43 720 (72.8%)
High speed (> 50 mph) 1 667 (4.8%) 470 (1.48%) 1 149 (1.9%)

Construction zone No 34 401 (98.5%) 31 519 (99.35%) 59 163 (98.6%)
Yes 509 (1.5%) 206 (0.65%) 869 (1.5%)

Visibility No 34 397 (98.5%) 30 941 (97.53%) 59 650 (99.4%)
Yes 513 (1.5%) 784 (2.47%) 382 (0.6%)

Contextual factors
Weather condition Clear 18 621 (53.3%) 16 698 (52.63%) 31 207 (52%)

Cloudy 10 827 (31%) 10 266 (32.36%) 18 742 (31.2%)
Rain 2 700 (7.7%) 2 468 (7.78%) 5 528 (9.2%)
Snow 2 762 (7.9%) 2 293 (7.23%) 4 555 (7.6%)

Pavement condition Dry 24 649 (70.6%) 22 588 (71.20%) 43 011 (71.7%)
Wet 2 004 (5.7%) 4 712 (14.85%) 10 311 (17.2%)
Snow 4 269 (12.2%) 3 638 (11.47%) 5 740 (9.6%)
Ice 988 (2.8%) 787 (2.48%) 970 (1.6%)

Lighting condition Day 27 033 (77.4%) 26 107 (82.29%) 45 295 (75.5%)
Nighttime without lighting 6 190 (17.7%) 1 249 (3.94%) 1 760 (2.9%)
Nighttime with lighting 1 687 (4.8%) 4 369 (13.77%) 12 977 (21.6%)

Crash characteristics
TOD AM peak (6:00–9:59) 5 269 (15.1%) 5 620 (17.71%) 8 957 (14.9%)

Mid-day (10:00–15:59) 14 453 (41.4%) 14 282 (45.02%) 25 072 (41.8%)
PM peak (16:00–18:59) 9 077 (26%) 7 543 (23.78%) 14 382 (24%)
Night (19:00–5:59) 6 111 (17.5%) 4 280 (13.49%) 11 621 (19.4%)

Manner of collision SVC 6 203 (17.8%) 2 110 (6.65%) 5 074 (8.5%)
Rear-end 11 526 (33%) 3 546 (11.18%) 21 050 (35.1%)
Head-on 528 (1.5%) 268 (0.84%) 993 (1.7%)
Sideswipe 6 272 (17.9%) 2 552 (8.04%) 7 651 (12.7%)
Angle 10 381 (29.7%) 23 249 (73.28%) 25 264 (42.1%)

Turning movement No 20 072 (57.5%) 20 117 (63.41%) 31 851 (53.1%)
Yes 14 838 (42.5%) 11 608 (36.59%) 27 181 (45.3%)

Merging/lane-changing No 32 442 (92.9%) 31 560 (99.48%) 58 506 (97.5%)
Yes 2 468 (7.1%) 165 (0.52%) 1 526 (2.5%)

Presence of bike/ped No 33 914 (97.2%) 30 397 (95.81%) 57 951 (96.5%)
Yes 996 (2.8%) 1 328 (4.19%) 2 081 (3.5%)

Rollover No 34 758 (99.6%) 31 704 (99.93%) 59 985 (99.9%)
Yes 152 (0.4%) 21 (0.07%) 47 (0.1%)
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4 Model development

The ordered logit (OL) model is used to account for
the ordinal nature of the crash injury severity levels.
The structure of an OL model is derived by defining an
unobserved latent propensityU, which can be described
as:

U = β
′
X + ε (4)

where X is a vector of independent variables defining
the discrete ordering for each observation, β is a
vector of estimable model coefficients, and ε is an
error term accounting for the unobservable effects
assumed to follow a standard logistic distribution across
observations. Using this structure, the observed ordinal
dependent variable, or the crash injury severity for each
observation can be defined as:

y = 1 if U ≤ µ1

y = 2 if µ1 ≤ U ≤ µ2

. . .
y = I if U ≥ µI−1

 (5)

where the µ’s are estimable thresholds that define y
corresponding to integer ordering of injury severity
levels with I as the highest integer level of injury
severity.

As noted earlier, driver impairment was not explored
as driver error in previous literature. However, driver
impairment may have significant influence of driver
errors and resulting crash outcomes. Driver impairment
can be considered either as an independent variable
or under the driver error category. To understand
the effect of driver errors, impairment, and their
concurrence, two models are proposed as follows:

Model with Partial Error Combinations: Using driver
impairment as independent variable and interaction
between impairment and driver errors (8 levels) in
association with other explanatory variables.

Model with All Error Combinations: Using driver
impairment as an error category resulting in 16 driver
combinations in association with other explanatory
variables.

In the Model with Partial Error Combinations, driver
impairment was considered as an independent variable
outside driver error categories. An interaction term
between driver impairment and 8-levels of driver errors
was defined inModel with Partial Error Combinations.
Model with All Error Combinations considers driver
impairment as an error category which resulted in 8

driver errors without impairment and 8 driver errors
with impairment. A comparison between alternative
model specifications can help to understand the proper
way to consider driver impairment when both driver
impairment and driver errors are available to the
analyst.

The OL model was estimated for urban intersection-
related crashes by control types. The coefficient
estimates from the OL model represent the ordered
log-odds estimate where a positive coefficient means a
possible increase in the latent injury risk propensity and
a negative valuemeans a possible decrease in injury risk
propensity. The parameter estimates from OL models
forModel with Partial and All Error Combinations are
presented in Table 4 and Table 5, respectively.

To compare model performance, a Base Model
was estimated without driver error combinations.
The Akaike Information Criterion (AIC) and
Log-Likelihood of the estimated Base Model
were 43414, 42033.58, 80276.28, and -21677, -
20998.79, -40111.14, respectively for uncontrolled,
sign-controlled and signal-controlled intersections.
A comparison between the model performance
comparison indicates that both AIC and log-likelihood
significantly improved with the incorporation of driver
error combinations into injury severity modeling
for all intersection control types. A likelihood-
ratio (L-R) test was conducted to determine the
statistical significance of the model performance
after incorporating driver error combinations into
injury severity models. The L-R test results indicate
that statistically significant improvement in model
performance can be achieved with both Model
with Partial and All Error Combinations compared
with the Base Model. Thus, it can be noted that
the incorporation of driver errors can significantly
improve model performance in predicting crash injury
outcomes.

Comparing model performance between partial and
all error combinations, it can be noted that both
models yielded almost similar AIC and log-likelihood
estimates. This result indicated that the OL model
can yield similar model performance regardless of how
the impairment variable is considered in the model
formulation. One possible reason for obtaining similar
model performance can be a low sample size of
impairment-related crashes. There were 3.82%, 2.39%,
and 2.94% impairment-related crashes at uncontrolled,
sign-controlled, and signal-controlled intersections,
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Table 4Model estimation result for Model with Partial Error Combinations

Variable Value Uncontrolled Sign-controlled Signal-controlled
Estimate Std. error Estimate Std. error Estimate Std. error

Driver characteristics
Gender (female) Male -0.11 0.03 -0.09 0.03 -0.11 0.02
Age (young) Mid-age (25–65 yrs) 0.05 0.03 0.05 0.03 0.04 0.02

Old (> 65 yrs) 0.08 0.05 0 0.04 0.08 0.03
Vehicle type (passenger car) Motorcycle 2.57 0.1 2.39 0.15 2.32 0.11

Light truck -0.03 0.04 -0.15 0.04 -0.05 0.03
Heavy truck -0.34 0.08 -0.23 0.08 -0.48 0.05

Safety-restrained (no) Yes -0.84 0.04 -0.79 0.04 -0.68 0.03
Roadway factors
Horizonal curve (no) Yes -0.39 0.04 -0.24 0.05
Posted speed (< 25 mph) Medium (26–50mph) 0.34 0.03 0.29 0.03 0.33 0.02

High (> 50mph) 0.23 0.06 0.54 0.1 0.25 0.07
Construction zone (no) Yes -0.29 0.11 NA NA NA NA
Visibility (no) Yes 0.23 0.1 NA NA NA NA
Environmental factors
TOD (midday) AM peak -0.05 0.04 -0.03 0.04 -0.08 0.03

PM peak -0.05 0.03 -0.08 0.03 -0.13 0.02
Night -0.12 0.04 0.05 0.05 -0.12 0.03

Pavement condition (dry) Wet -0.1 0.04 -0.11 0.04 -0.08 0.02
Snow -0.63 0.04 -0.65 0.04 -0.69 0.03
Ice -0.68 0.09 -0.83 0.1 -0.81 0.09

Lighting condition (day) Night w/o lighting NA NA -0.09 0.07 NA NA
Night with lighting NA NA -0.1 0.05 NA NA

Crash characteristics
Crash type (SVC) Rear-end 0.4 0.05 -0.09 0.07 0.55 0.04

Head-on 1.26 0.1 0.61 0.14 1.54 0.08
Sideswipe -0.43 0.05 -0.44 0.08 0.06 0.05
Angle 0.55 0.05 0.38 0.06 0.96 0.04

Turning movement (no) Yes -0.09 0.03 -0.35 0.03 -0.22 0.02
Merging/lane-changing (no) Yes -0.21 0.06 -0.45 0.2 -0.92 0.08
Presence of bike/ped (no) Yes 3.01 0.08 2.67 0.07 2.99 0.06
Overturn (no) Yes 1.2 0.17 0.96 0.44 1.18 0.32
Driver errors (O) R 0.22 0.05 0.14 0.06 0.22 0.04

D 0.11 0.05 0.4 0.05 0.25 0.03
P 0.2 0.04 0.22 0.04 0.2 0.03
RD 0.36 0.08 0.35 0.11 0.41 0.05
RP 0.36 0.08 0.35 0.07 0.39 0.06
DP 0.41 0.07 0.65 0.08 0.35 0.05
RDP 0.85 0.14 1.02 0.13 0.72 0.09

Impairment (no) Yes 0.2 0.13 0.53 0.18 0.46 0.11
Interactions R-Impair:Y 0.53 0.21 -0.57 0.35 -0.44 0.18

D-Impair:Y 0.47 0.21 0.26 0.26 0.07 0.16
P-Impair:Y 0.19 0.17 -0.04 0.23 -0.05 0.15
RD-Impair:Y 0.02 0.4 0.39 0.46 -0.13 0.27
RP-Impair:Y 0.1 0.29 -0.21 0.42 0.09 0.28
DP-Impair:Y 0.62 0.21 0.13 0.29 0.48 0.22
RDP-Impair:Y 0.31 0.39 -0.55 0.47 0.12 0.34

Intercept m1 0.53 0.07 0.36 0.08 0.84 0.06
m2 4.13 0.08 4 0.09 4.67 0.07

Model performance
AIC 43 316.3 41 896.2 80 116.43
Log-likelihood -21 615.15 -20 906.1 -40 017.21

Parameter estimates presented in italic font are not statistically significant at a 10% significance level
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Table 5Model estimation result for Model with All Error Combinations

Variable Value Uncontrolled Sign-controlled Signal-controlled
Estimate Std. error Estimate Std. error Estimate Std. error

Driver characteristics
Gender (female) Male -0.11 0.03 -0.09 0.03 -0.11 0.02
Age (< 25 yrs) Mid-age (25–65 yrs) 0.05 0.03 0.05 0.03 0.04 0.02

Old (> 65 yrs) 0.08 0.05 0 0.04 0.08 0.03
Vehicle type (passenger car) Motorcycle 2.57 0.1 2.39 0.15 2.32 0.11

Light truck -0.03 0.04 -0.15 0.04 -0.05 0.03
Heavy truck -0.34 0.08 -0.23 0.08 -0.48 0.05

Safety-restrained (no) Yes -0.84 0.04 -0.79 0.04 -0.68 0.03
Roadway factors
Horizonal curve (no) Yes -0.39 0.04 -0.24 0.05
Posted speed (≤ 25mph) Medium (26–50mph) 0.34 0.03 0.29 0.03 0.33 0.02

High (>50mph) 0.23 0.06 0.54 0.1 0.25 0.07
Construction zone (no) Yes -0.29 0.11
Visibility (no) Yes 0.23 0.1
Environmental factors
TOD (mid-day) AM peak -0.05 0.04 -0.03 0.04 -0.08 0.03

PM peak -0.05 0.03 -0.08 0.03 -0.13 0.02
Night -0.12 0.04 0.05 0.05 -0.12 0.03

Pavement condition (dry) Wet -0.1 0.04 -0.11 0.04 -0.08 0.02
Snow -0.63 0.04 -0.65 0.04 -0.69 0.03
Ice -0.68 0.09 -0.83 0.1 -0.81 0.09

Lighting condition (day) Night wi/o lighting -0.09 0.07
Night with lighting -0.1 0.05

Crash characteristics
Crash type (SVC) Rear-end 0.4 0.05 -0.09 0.07 0.55 0.04

Head-on 1.26 0.1 0.61 0.14 1.54 0.08
Sideswipe -0.43 0.05 -0.44 0.08 0.06 0.05
Angle 0.55 0.05 0.38 0.06 0.96 0.04

Turning movement (no) Yes -0.09 0.03 -0.35 0.03 -0.22 0.02
Merging/lane-changing (no) Yes -0.21 0.06 -0.45 0.2 -0.92 0.08
Presence of bike/ped (no) Yes 3.01 0.08 2.67 0.07 2.99 0.06
Overturn (no) Yes 1.2 0.17 0.96 0.44 1.18 0.32
Driver error combinations with interactions
Driver errors (O) R 0.22 0.05 0.14 0.06 0.22 0.04

D 0.11 0.05 0.4 0.05 0.25 0.03
P 0.2 0.04 0.22 0.04 0.2 0.03
RD 0.36 0.08 0.35 0.11 0.41 0.05
RP 0.36 0.08 0.35 0.07 0.39 0.06
DP 0.41 0.07 0.65 0.08 0.35 0.05
RDP 0.85 0.14 1.02 0.13 0.72 0.09
OI 0.2 0.13 0.53 0.18 0.46 0.11
RI 0.95 0.18 0.1 0.29 0.23 0.14
DI 0.78 0.17 1.2 0.18 0.78 0.11
PI 0.59 0.12 0.71 0.15 0.61 0.11
RDI 0.58 0.38 1.27 0.42 0.74 0.24
RPI 0.66 0.26 0.67 0.38 0.93 0.25
DPI 1.22 0.17 1.31 0.22 1.29 0.18
RDPI 1.35 0.35 1 0.42 1.3 0.31

Intercept m1 0.53 0.07 0.36 0.08 0.84 0.06
m2 4.13 0.08 4 0.09 4.67 0.07

Model performance
AIC 43 316.3 41 812.2 80 116.43
Log-likelihood -21 615 -20 906.1 -40 017.21

Parameter estimates presented in italic font are not statistically significant at a 10% significance level
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respectively. However, the driver error interactions
with impairment were not statistically significant in
predicting crash severity outcomes in the Model with
Partial Error Combinations. Excluding interaction
terms from the partial error combination model resulted
in a further reduction in model performance. Thus,
Model with All Error Combinations has an overall
better performance among all developed models across
intersection control types.

5 Result and discussion

The OL modeling results presented in Table 4 and
Table 5 showed that driver error combinations are
statistically significant at a 10% significance level
across intersection control types in both models.
Comparing estimated log-odds for driver error
combinations between partial and all error combination
models portrayed that both models can generate almost
similar log-odds for driver errors. However, while
comparing the estimated log-odds for occurrences of
driver errors under impairment, significant changes can
be observed. When considering impairment outside
the driver error categories in the Model with Partial
Error Combinations, most of the interaction terms
are not statistically significant at a 10% significance
level. On the contrary, driver error combination
levels generated when considering driver impairment
as an error category are statistically significant at a
5% significance level in the Model with All Error
Combinations.

From the model formulation perspective, log-odds
estimates of driver error interactions with impairment
in theModel with Partial Error Combinations represent
the compound effect of the concurrence of driver errors
and impairment in addition to their individual effects.
But in the Model with All Error Combinations, the
interactions of driver errors with impairment were
estimated considering no driver error as a base level.
From a theoretical perspective, it may be beneficial to
estimate the effect of driver impairment without any
driver errors as specified in the Model with All Error
Combinations using error combination designation ‘OI’
rather than estimating the effect regardless of driver
errors. The model formulation used in Model with
All Error Combinations provides a unique approach by
considering driver impairment as an error category to
understand the influence of each level of driver error
combinations, with or without under the influence of
impairment on crash outcomes.

A detailed exploration of the estimated log-odds
for driver errors both with and without impairment
indicated that concurrence of driver errors may have
a higher positive impact on injury outcomes compared
with driver impairment. This indicates concurrence of
multiple driver errors can lead to more severe injury
crashes than crashes that occur under driver impairment
only. Another notable trend in concurrence of multiple
driver errors tends to have a higher log-odds estimate
compared with a single error. These results align with
the results noted by Shaon & Qin (2020) that more
complex errors may lead to severe injury crashes for
rural segment-related crashes. The impact of driver
errors can be further amplified if they occur under
driver impairment.

Regarding the traditional set of variables, similar results
can be observed with OL parameter estimates as
indicated in previous literature (Wang & Qin, 2015;
Morgan & Mannering, 2011; Yasmin et al., 2014).
The OL parameter estimate indicates that the latent
propensity is higher for motorcycle riders compared
with its counterparts. Female drivers and old drivers are
more likely to endure higher injury severity in a crash
than their counterparts. The negative sign of the use
of seatbelt demarcates a decrease in the likelihood of
the injury risk propensity. Among roadway factors, a
higher speed limit may result in more injury crashes for
all control types. The existence of horizontal curves,
presence of a construction zone decreases the risk
propensity of injury crashes. The positive log-odds for
obscured visibility indicate that an intersection without
clear signage of the existence of an uncontrolled
intersection can increase the risk propensity of injury
severity. Among crash characteristics, the presence of a
bike or pedestrian in a crash has significantly high log-
odds indicating a crash may yield more severe injury
if a vulnerable road user is involved. The likelihood
of injury risk propensity is also high if a vehicle rolled
over in the event of a crash. The estimated log-odds
indicate that the turning movement may reduce the risk
propensity of severe crashes. Regarding manner-of-
collision, angle crash has the highest risk propensity
and sideswipe crash has the lowest risk propensity
compared with single-vehicle crashes. Consistent but
varying in the magnitude of results were observed
across intersection control types.
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6 Marginal effects and applications

The estimated marginal effects of all driver error
combinations are presented in Table 6. The
estimated marginal effects indicate that all driver error
combinations increase the risk of both minor injury
and major injury crashes compared with no driver
error crashes. For uncontrolled intersections, RI, DPI,
and RDPI are the top factors that have a significant
impact on major injury compared with PDO crashes.
A similar impact of driver errors with impairment can
also be found in sign-controlled and stop-controlled
intersections. The highest marginal contribution in
sign-controlled and signal-controlled intersections was
DPI and RDPI, respectively. Based on results provided
in Table 6, it is evident that concurrence of multiple
driver errors can lead to more severe injury crashes
which can be further largely amplified if the driver is
under influence of alcohol or drugs.

Based on the OL modeling results, it is important to
identify potential and effective countermeasures that
can be implemented to influence and control driver
behaviors at the intersection. The recommended
countermeasures presented in Table 7 are collected
from multiple previous studies (Devlin et al., 2011;
FHWA, 2019). These countermeasures focused
on mitigating driver errors and minimizing crash
consequences for intersections.

Concerning driver errors, law enforcement-related
countermeasures can help to identify repeated offenders
and enforce driving behaviors allowed by the law.
The driver training programs are proposed to educate
drivers and improve their capability in driving
decision-making. Recent advancements in in-vehicle
technologies can also help in reducing the occurrence
of certain driver errors such as inattentive driving.
Regarding driver impairment, a series of proven and
potential countermeasures have been proposed in the
literature (Venkatraman et al., 2021). Intersection
design-related countermeasures such as installing
warning signs, increasing visibility of the stop sign
are proposed considering the effect of roadway factors
on crash outcomes. Moreover, improved lighting,
roadway marking can increase the identification
of vulnerable road users at the intersection. The
availability of improved vehicle features can be
beneficial to protect drivers and occupants in a crash
event.

7 Conclusions

This study attempted to understand the effect of
driver errors on the crash injury outcome at urban
intersections by categorizing driver errors into
recognition, decision, and performance based on the
stage of information processing during a driving task.
Considering the concurrence of driver errors, eight
possible combinations were developed. Furthermore,
the eight additional combinations were generated by
combining driver error with impairment. The statistical
dependence between different combinations of driver
error categories and injury outcomes shows that more
severe crashes tend to occur when the driver makes
multiple errors. The compound effect of driver errors
and impairment indicates that the impact of driver
errors can be amplified while the driver is impaired.

Next, the OL model was applied to quantify the
impact of driver errors on the crash injury outcomes
at uncontrolled, sign-controlled, and signal-controlled
intersections. Estimated ordered risk propensities were
discussed and compared between models with different
sets of variables. The model results indicate that all
driver error combinations have a statistically significant
and positive impact on injury crashes compared to
crashes with no driver errors. The results also indicate
that it might be beneficial from both theoretical and
modeling perspectives to consider driver impairment
as a driver error category to obtain fine-grained effects
of driver impairment while modeling with driver
errors. The model performance comparison shows
that including driver errors can significantly improve
prediction accuracy. Nevertheless, cautions should
be used while exploring inter-relationship between
driver errors and impairment as statistical modeling
results may yield pseudo-relationship. Finally, a list
of crash countermeasures was proposed to improve
safety conditions at intersections. The proposed
countermeasures were further categorized based on the
intended application area such as influencing driver
behavior, law enforcement, intersection design, vehicle
features, and advanced technology.
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Table 6 Estimated marginal effects of driver error combinations

Error combinations Uncontrolled Sign-controlled Signal-controlled
PDO Minor

injury
Major
injury

PDO Minor
injury

Major
injury

PDO Minor
injury

Major
injury

Driver errors O Base level
R -0.047 0.045 0.003 -0.033 0.031 0.002 -0.052 0.05 0.003
D -0.022 0.021 0.001 -0.094 0.088 0.006 -0.059 0.056 0.003
P -0.042 0.039 0.002 -0.049 0.046 0.003 -0.047 0.044 0.002
I -0.043 0.041 0.002 -0.126 0.117 0.009 -0.11 0.103 0.007
RD -0.08 0.075 0.005 -0.081 0.076 0.005 -0.099 0.093 0.006
RP -0.08 0.075 0.005 -0.081 0.076 0.005 -0.093 0.088 0.006
DP -0.091 0.085 0.006 -0.156 0.145 0.012 -0.084 0.079 0.005
RDP -0.199 0.184 0.015 -0.248 0.226 0.022 -0.177 0.164 0.012

Interactions RI -0.224 0.206 0.017 -0.023 0.022 0.001 -0.055 0.052 0.003
DI -0.182 0.169 0.013 -0.29 0.261 0.029 -0.19 0.176 0.014
PI -0.135 0.126 0.009 -0.171 0.158 0.013 -0.147 0.138 0.01
RDI -0.133 0.124 0.009 -0.307 0.275 0.032 -0.18 0.167 0.013
RPI -0.152 0.142 0.01 -0.16 0.148 0.012 -0.228 0.211 0.018
DPI -0.292 0.266 0.026 -0.317 0.283 0.034 -0.312 0.282 0.03
RDPI -0.323 0.292 0.031 -0.242 0.221 0.022 -0.314 0.283 0.031

Table 7 Crash countermeasure recommendations

Contributing factors Category Potential countermeasures
Decision errors Driver behavior Design and implement driver training programs to develop driver’s capability for

improved decision-making, e.g. Decision Driving Seminar from insurance
agencies

Recognition errors Law enforcement Enact and enforce cell-phone use while driving
Technology In-vehicle driver warning system to detect and warn driver’s when inattentive

Performance error Roadway design Increase the visibility of speed limit signs
Law enforcement Enact aggressive driving laws such as enhanced penalties for repeated offenders

Implement automated enforcement, e.g. red-light camera, speed traps
Impairment Law enforcement Enact, publicize, enforce, and adjudicate laws prohibiting alcohol-impaired

driving such as high-BAC sanction, providing sobriety checkpoints,
zero-tolerance enforcement, etc.

Visibility obscured Intersection design Install ‘Intersection ahead’ warning signs.
Increase the visibility of stop signs.

Posted speed limit Intersection design Reduce speed limit near intersections and install warning signs for ‘Reduced
speed ahead’

Age Driver behavior Periodically enforced older driver vision and medical review practices.
Enforced vehicle control education with license application for specific age
groups related to proper vehicle control, traffic rule, and right-of-way compliance.

Overturn Vehicle feature Improved vehicle structure with the availability of airbags and warning systems
for seat-belt use

Bike/pedestrian Intersection design Improved lighting at the intersection for increased pedestrian/bike visibility,
leading pedestrian intervals and green painted marking for pedestrian and bike
crossing

Law enforcement High visibility enforcement for driver yielding to bike/pedestrian
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