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Abstract: Pedestrians are among the most vulnerable road users in urban areas, and their safety is
a growing concern for transportation planners and engineers. Pedestrians are at disproportionately
high risk for injuries or fatalities in crashes with motor vehicles, highlighting the critical need to
address their safety. To address the dangers urban pedestrians face, the relationship between pedestrian
crashes and their contributing factors must first be understood. One way to do this is to use statistical
models relating pedestrian crash frequency with quantifiable contributing factors, such as land use,
demographics, and roadway characteristics. Perhaps the most important of these factors is pedestrian
exposure, which is often difficult to obtain because pedestrian volumes are not as widely available as
vehicle volumes. Since pedestrian volumes are not available across an entire network, they are often
estimated using statistical models—for example, negative binomial (NB) regression—rather than being
directly observed. These models are typically a ‘one-size-fits-all’ approach, applying the same model
to estimate pedestrian exposure across the entire network. However, relationships between pedestrian
exposure and explanatory features—such as population, infrastructure design, and land use context—
might differ significantly with respect to the context of an individual location. To address this issue,
this paper proposes a model-based recursive partitioning (MBRP) algorithm to develop pedestrian
exposure models. The MBRP approach combines traditional statistical methods (e.g. NB regression)
with recursive data partitioning techniques commonly found in tree-based machine learning methods.
This innovative approach yields a collection of exposure models stratified according to selected input
variables with unique relationships between explanatory variables and exposure. The proposed method
was tested on pedestrian exposure data from North Carolina significantly improved predictions of
pedestrian volumes by approximately 10%. Therefore, the MBRP algorithm presents a promising tool
for advancing pedestrian safety analyses in practical applications.
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1 Introduction

Pedestrian safety is a topic of growing concern in the
United States, especially in urban areas where 84% of
pedestrian fatalities in traffic crashes occur (NHTSA,
2023b). Widely considered to be the most vulnerable
roadway users, pedestrians are disproportionately
represented in fatality statistics, and their representation
is growing at an alarming rate. Data from the Fatality
Analysis Reporting System (FARS) indicates that
7 388 pedestrians were killed in traffic crashes in
2021, about 19% of all traffic fatalities in the United
States. As the greatest pedestrian fatality total since
1981, that pedestrian fatality total also represents a
12.5% increase from the previous year, following a
trend in yearly increases dating back to 2013 when
pedestrian fatalities accounted for 3% less of all traffic
fatalities (NHTSA, 2023a). To address the growing
concern for pedestrian safety, we must first understand
the relationship between factors that contribute to
pedestrian crashes and crash outcomes.

Often these relationships are quantified through
statistical models that relate frequency of pedestrian
crashes with observable factors that contribute to the
crashes. Many different models have been used to
investigate the relationships between pedestrian crashes
and their contributing factors – most often including
combinations of variables such as land use, socio-
demographic information, and roadway characteristics.
But perhaps the most important predictor of pedestrian
safety outcomes is pedestrian exposure. Unfortunately,
pedestrian exposure can be difficult to obtain because
pedestrian volumes are not as widely available across a
roadway network as vehicular volumes. This is because
network-scale pedestrian counts are resource-intensive
due to high costs associated with labor for manual
counts and prices charged for automated counts. Some
pedestrian volume data is more widely available from
fitness-tracking sources such as Strava, but data from
fitness-trackers is flawed in that they relay a self-
reporting sample and the trackers are subject to error
due to poor GPS reception, which is especially an
issue in urban environments (Lee & Sener, 2020).
Accurate volumes can also be difficult to obtain and
even impractical to use due to highly variable daily
volumes, short trips which may not be observed,
and difficulties in detecting individuals (Lagerwey
et al., 2015). Instead of directly using counts directly,
pedestrian volumes are usually estimated through
statistical models.

Several studies have developed pedestrian exposure
models to predict the amount of pedestrian activity at a
given level based on input variables that reflect the built
environment, roadway features and other variables.
These have traditionally been developed using log-
linear ordinary least squares regression (OLS) or
negative binomial (NB) regression (Behnam & Patel,
1977; Griswold et al., 2019; Hankey et al., 2012;
Haynes et al., 2010; Lindsey et al., 2006, 2007; Liu
& Griswold, 2009; Miranda-Moreno & Fernandes,
2011; Pulugurtha & Repaka, 2008; Schneider et al.,
2009, 2012). Pedestrian exposure has also been
estimated using Tobit models and by modifying NB
regression techniques to artificially inflate zero value
pedestrian counts, in both cases relating the counts to
demographics, land use, and traffic data (Lee et al.,
2019). Still other studies suggest using stepwise
linear regression to account for spatial variations
in independent variables (Hankey & Lindsey, 2016;
Hankey et al., 2017; Lu et al., 2018).

While these model types have their own merit, they
also have various flaws when applied to estimating
pedestrian exposure. OLS regression does not account
for the count nature of volume data, and using a log-
linear form assumes a logarithmic distribution that may
not be observed. Similarly, Tobit models assume a
normal distribution for the dependent variable which
is not typically observed in pedestrian count data.
Stepwise linear regression may result in atheoretical
coefficient estimates, which makes interpretation
complicated and may limit transferability to other
datasets. NB regression is the most appropriate and
the most common, because of its ability to account
for overdispersion in fluctuating pedestrian volumes
and the count nature of the data. Even so, all these
models are flawed in that they are typically a ‘one-size-
fits-all’ approach in which the same model is used to
estimate pedestrian exposure at all locations within a
transportation network. However, the relationships
between pedestrian exposure and explanatory
features—such as population, infrastructure design,
and land use context—might differ significantly with
respect to the context of an individual location, which
may not be known a priori. Incorporating these
differences could help improve the exposure model
and provide more accurate predictions.

To help address this issue, this paper proposes a
model-based recursive partitioning (MBRP) algorithm
to develop pedestrian exposure models. The MBRP
approach combines traditional statistical methods (e.g.
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NB regression) with the recursive data partitioning
techniques commonly found in tree-based machine
learning methods. The proposed method was tested on
pedestrian exposure data obtained in North Carolina
and shown to significantly improve predictions of
pedestrian volumes by approximately 10%. Therefore,
the MBRP algorithm presents a promising tool for
advancing pedestrian safety analysis in practical
applications.

The remainder of this paper is organized as follows.
Section 2 provides a description of the methodology
used for NB regression and the proposed MBRP
approach. Section 3 describes the dataset used. Section
4 provides an analysis of the results from the MBRP
model. Finally, Section 5 contains concluding remarks.

2 Methodology

The goal of this research is to demonstrate the potential
of theMBRP algorithm to estimate pedestrian exposure
better than traditional regression methods. To do so,
exposuremodels were developed over a training dataset
using traditional NB regressionmethods and theMBRP
algorithm. The performance of the MBRP model was
judged relative to the NB regression model based on
goodness of fit statistics over a separate test dataset and
cumulative residual (CURE) plots.

2.1 NB regression

Pedestrian counts are always a non-negative integer
and are therefore most appropriately modeled using
count models. Though there are many count
regressionmodels, NB regressionmodels are usedmost
extensively in research due to their ability to account
for overdispersion in the dataset, which is commonly
observed in pedestrian count data. This paper’s NB
regression procedure is adapted from Hankey et al.
(2012) and Lee et al. (2019).

NB regression can be described through the following
formulation: Let i = 1, 2, 3, . . . , N represent the index
of a given location where N is the number of locations
in the dataset. In the NB model, the pedestrian count
at a location i, takes an exponential form as shown in
Equation (1):

λi = E (yi) = exp (βXi + εi) (1)

where λi is the predicted pedestrian count at location i,
yi is the observed pedestrian count at location i, β is
the vector of estimated parameters,Xi is the associated

vector of explanatory variable values observed at
location i, and εi is an error term such that exp(εi)
has a gamma distribution. A maximum likelihood
estimation (MLE) method was adopted using the
probability distribution for NB regression as presented
in Equation (2), and the likelihood function as presented
in Equation (3). TheMLEmethod allows for estimation
of the coefficient parameter, β, and the overdispersion
parameter, α, relying on the gamma function, denoted
by Γ(·).

P (yi) =

Γ

(
1

α
+ yi

)
Γ

(
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)
yi!

[
αλi
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] 1
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L(α, β) =
∏N

i=1 P (yi) (3)

Selecting parameters which maximize the likelihood
function presented in Equation (3) establishes a model
expected to best fit the data. Typically, the likelihood
value found by maximizing Equation (3) is very
small, so frequently the natural log of Equation (3) is
optimized in place and is reported as log-likelihood.

2.2 MBRP algorithm

The MBRP algorithm combines traditional statistical
modeling, such as NB regression, with recursive data
partitioning techniques commonly found in tree-based
machine learningmethods. In theMBRP algorithm, the
root node is a parametric model fitted over the entire
dataset. Child nodes are then formed through splitting
based on a decision rule, which continues until the
terminal node of the tree model is reached. Figure 1
depicts a general form of the tree model (Kashani &
Mohaymany, 2011). The following formulation for the
MBRP algorithm draws extensively from Seibold et al.
(2016) and descriptions from Tang & Donnell (2019).

Developing a model using the MBRP algorithm is a
process that occurs in three steps:

1. Fit a parametric model to all observations in the
dataset;

2. Test coefficient stability over the splitting variable;
and

3. Determine the optimal cut point of the splitting
variable.
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In Step 1, the parametric model with parameter vector,
θ (represented by the root node in ) may be estimated
through methods such as OLS or MLE which inform
the objective function, Ψ(·) as found in Equation (4).
The coefficients are then estimated through a partial
score function as shown in Equation (5), where ψ(·)
represents the score function, and β is the estimated
parameter (Seibold et al., 2016).

Figure 1 General structure of a tree model (Kashani &
Mohaymany, 2011)

θ̂ = argmin
∑N

i=1Ψ((y,X)i, θ) (4)

∑N
i=1

∂Ψ((y,X)i, θ)

∂β
=

∑N
i=1 ψβ ((y,X)i, θ) (5)

In Step 2, a generalizedM-fluctuation test is used to test
coefficient stability over splitting variables, with the
null hypothesis stating that the partial score functions
from Equation (5) are independent of partitioning
variables. This hypothesis indicates that global
estimates of an independent variable are appropriate.
Equation (6) shows the functional form of the null
hypothesis, where Z is the splitting variable and J is
the number of splitting variables (Seibold et al., 2016).

H
βj

0 : ψβ

(
(Y,X) , θ̂

)
⊥ Zj , j = 1, . . . , J (6)

The splitting variable is selected based on the greatest
correlation with partial score functions, and the optimal
cut point of the splitting variable is determined by
evaluating segmented objective functions as shown in
Equation (7) and choosing the minimum value. In
Equation (7), Ib is the set of observations belonging to
b under splitting rule (Tang & Donnell, 2019).

SCORE =
∑B

b=1

∑
i∈Ib Ψ(Yi, θb) (7)

The process outlined above results in child nodes after
the splitting rule is followed. The process is then
repeated on all child nodes until terminal nodes are
reached, where there is no longer coefficient instability
as determined in Step 2 of the process. Each of the
terminal nodes represents a parametric model, and any
observation in the root nodes that meets the splitting
criteria to fall into the terminal node can be predicted
using the corresponding parametric model. Additional
information about the MBRP algorithm can be found
in Zeileis & Hornik (2007) and Zeileis et al. (2008).

3 Data

Pedestrian count data analyzed in this study comes
from the North Carolina Department of Transportation
(NCDOT) and was collected and analyzed for a
previous study investigating factors contributing to
pedestrian crash outcomes (Gayah et al., 2022).
The counts are not a random sample, arising from
a variety of convenience samples such as turning
movement counts (TMCs) and pedestrian safety studies
at particularly dangerous intersections or intersections
with high-volumes relative to other intersections in
the city. The non-random sample is still considered
to be a valid sample because the counts are known to
demonstrate a wide range of pedestrian count values,
as well as to accurately represent the expected levels of
pedestrian activity near the count location. The counts
come from the following sources:

• 1 993 counts collected by NCDOT as part of turning
movement counts (TMCs) or other similar analyses
• 496 counts collected between 2011 and 2020 by
City of Charlotte TMC program as part of a FHWA
funded research project
• 19 counts from downtown Raleigh, NC as collected
for a NCDOT pedestrian safety study
• 539 counts from Greensboro DOT/Greenville
Urban Area Metropolitan Planning Organization
(MPO)
• 387 counts provided by Gaston-Cleveland-Lincoln
MPO
• 184 counts provided by the City of Durham.

Each observation in the dataset included vehicular
volume data, roadway features at the count location,
census-level demographic statistics, and land-use
statistics for a 0.5-mile radius surrounding the count
location. A summary of the variables that were
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included in final models is provided in Table 1 and
Table 2. The land use mix variable is an aggregate
of land uses in the surrounding area adapted from the
methodology outlined in Frank et al. (2004) and Gayah
et al. (2022). The land use mix value is based on four
land use types: high intensity developed, medium
intensity developed, low intensity developed, and
all other land use classifications combined, where a
value of 1.00 represents a perfect balance of all four
land uses, and 0.00 represents only a single land use
present. Alcohol sales locations are not commonly
considered as an indicator variable; however, including
this variable in indicator form can be justified through
contextualization—the two categories represent the
difference between an area with single liquor store
and a couple of restaurants, and an area with densely
clustered bars expecting high foot traffic and fewer
vehicles. Including this variable in this form was found
to improve model performance relative to a continuous
form of alcohol sales locations.

Of the 3 618 counts provided, the majority were
performed at intersections, and therefore intersections
were selected as the unit of analysis. Count locations
that were not intersections, in non-urban environments,
and count durations less than or equal to 2.5 hours
or equal to 24 hours were removed from the analysis
to limit the analysis to characteristically similar count
locations. The remaining 2 430 pedestrian counts
ranged from 0 to 14 854 pedestrians over the respective
durations, though 75% of counts registered 67 or fewer
pedestrians. An 80/20 split was performed over the
full 2 430 counts, creating a training dataset (1 942
observations) and a testing dataset (488 observations)
such that both the NB and MBRP models would be
estimated over the training dataset, and the models’
fitness would be assessed using the goodness of fit
statistics based on their predictions over the test
dataset. The training and test datasets were selected
to be representative samples of the full dataset with
approximately equal summary statistics, but each
dataset was also vetted to ensure representation of
outlier counts. Due to the nature of the outlier counts,
exact matches for maximum count values could not be
achieved, and the training dataset is known to contain a
greater proportion of lower count values because of the
higher maximum count but otherwise similar summary
statistics. Table 3 shows the summary statistics of the
final split datasets.

4 Analysis and results

This section describes the estimation results from
the NB regression model and the MBRP model,
including the assessments of goodness of fit through
mean absolute error (MAE), mean absolute percentage
error (MAPE), and root mean square error (RMSE).
Additionally, a cumulative residual (CURE) plot was
generated with both models plotted against the 95-
percent confidence interval as determined for the
NB regression model, according to the methodology
outlined in Hauer (2015).

The results of the MLE process for the NB regression
model and the model generated from the MBRP
algorithm are presented in Table 4. In the modeling
process, only the variables found to be statistically
significant at the 5% significance level were retained.
Exceptions were made for some variables found to
be insignificant at the 5% level but were deemed
theoretically important predictors of pedestrian counts.
Additionally, any variables that were found to be
inconsistent with theory regarding the sign of the
estimated parameter were vetted for their contribution
to the model’s predictive performance before being
considered for removal.

4.1 NB regression

All variables included in the final NB regression model
were found to be statistically significant at the 95%
confidence level or higher and were found to meet
expectations consistent with engineering judgement:

• Count duration. In the dataset, the base condition
is a 12-hour count. Therefore, it would be expected
that a 13-hour count would yield a higher prediction
due to a longer period for pedestrians to be
observed. The same logic would indicate that a 16-
hour count parameter should be greater than the 13-
hour count parameter, however, 16-hour counts are
typically conducted at two-way stop intersections
being considered for signalization. Generally, these
intersections have high traffic volumes which make
pedestrian access uncomfortable, resulting in fewer
pedestrians. Therefore, a smaller or even negative
coefficient may be appropriate to describe the
effects of a 16-hour count on pedestrians observed.
• Traffic conditions. As previously described,
pedestrians are less comfortable walking near
roadways with higher traffic volumes where they
may be more vulnerable to crashes (Miranda-
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Table 1 Continuous variables included in final NB and MBRP models

Mean Standard deviation Minimum Maximum
Land use mix 0.80 0.17 0.10 1.00
Proportion of non-motorized commuters
within 0.25 miles of count location

0.07 0.09 0.00 0.55

AADT (veh/day) 20 260 11 133 1 200 77,000
Number of parcels within 0.25 miles of count
location (parcel count)

92.98 91.93 2 568

Table 2 Discrete variables included in final NB and MBRP models

1 0
Count duration = 13 hours (1 indicates yes, 0 indicates no) 74.49% 25.51%
Count duration = 16 hours (1 indicates yes, 0 indicates no) 5.27% 94.73%
Indicator for 0-5 alcohol sales locations within 0.25 miles of count location (1 indicates
yes, 0 indicates no)

40.00% 60.00%

Indicator for ≥ 6 alcohol sales locations within 0.25 miles of count location (1 indicates
yes, 0 indicates no)

29.29% 70.71%

Indicator for presence of sidewalk (1 indicates present, 0 indicates not present) 69.88% 30.12%
Indicator for presence of crosswalk (1 indicates present, 0 indicates not present) 32.76% 67.24%
Indicator for bus stop located within 0.25 miles of count location (1 indicates present,
0 indicates not present)

58.72% 41.28%

Indicator variable for posted speed limit ≥ 40mph (1 indicates yes, 0 indicates no) 45.68% 54.32%

Table 3 Summary statistics of pedestrian counts

Minimum 25th-percentile Median Mean 75th-percentile Maximum
Full dataset 0 4 19 145.7 67.00 14 854
Training dataset 0 4 19 146.4 67.75 14 854
Test dataset 0 4 19 143.0 65.50 9 839

Moreno & Fernandes, 2011). That trend extends
also to roadways with higher speed limits as crashes
involving pedestrians and vehicles moving at higher
speeds are known to result in more severe outcomes
for pedestrians (Pulugurtha &Repaka, 2008). In the
NB regression model, we find that the coefficients
associated with the natural logarithm of AADT and
speed limits greater than or equal to 40 miles per
hour are negative, indicating a negative impact on
pedestrian counts.

• Pedestrian-friendly infrastructure. Presence of
features such as crosswalks and sidewalks are
expected to contribute positively to pedestrian
counts. Crosswalks provide priority to pedestrians
crossing at intersections, and sidewalks provide
a separate right of way for pedestrians to walk
safely next to a road (Lee et al., 2019; Lu et al.,
2018). These expectations are met by the positive

coefficients associated with presence of a crosswalk
or sidewalk in the NB regression model. Bus
stops are also associated with greater pedestrian
presence due to the access distance between the trip
origin/destination and the transit stop (Hankey et al.,
2012; Pulugurtha & Repaka, 2008).

• Land development. Denser, more varied use of
land is expected to result in greater pedestrian
counts due to convenience of the walking
mode. Increases in parcel count, a measure of
urban density, should indicate shorter distances
to potential destinations, while land use mix
increases suggest a greater variety of residential,
commercial, and industrial uses within a small
radius (Gayah et al., 2022). Walking becomes more
convenient over shorter distances, and therefore
more pedestrians are likely to be observed with
greater parcel count and land use mix. Additionally,
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Table 4 NB regression and MBRP model estimation results

Variable NB regression MBRP
Parcel count ≤ 71
‘Low urban density’

Parcel count > 71
‘High urban density’

Constant 2.538 3.226 4.926
Count duration = 13 hours (1 indicates yes,
0 indicates no)

0.428 0.747 0.293

Count duration = 16 hours (1 indicates yes,
0 indicates no)

-0.408 0.078 -0.965

Land use mix 1.265 — —
Indicator for 0–5 alcohol sales locations within 0.25
miles of count location (1 indicates yes, 0 indicates
no)

0.172 0.210 0.603

Indicator for ≥ 6 alcohol sales locations within 0.25
miles of count location (1 indicates yes, 0 indicates
no)

0.680 0.743 1.054

Proportion of non-motorized commuters within 0.25
miles of count location

9.262 8.958 9.009

Natural logarithm of AADT (veh/day) -0.301 -0.228 -0.260
Indicator for presence of sidewalk (1 indicates
present, 0 indicates not present)

0.972 1.046 0.696

Indicator for presence of crosswalk (1 indicates
present, 0 indicates not present)

0.576 1.019 -0.089

Indicator for bus stop located within 0.25 miles of
count location (1 indicates present, 0 indicates not
present)

0.214 0.418 0.008

Natural logarithm of parcel count 0.262 — —
Indicator variable for posted speed limit ≥ 40mph
(1 indicates yes, 0 indicates no)

-0.636 -0.746 -0.381

Overdispersion parameter 1.550 2.435 1.226
Akaike Information Criterion (AIC) 17 889 17 857
Values in italics are not significant at 95% confidence level.

alcohol sales locations are frequently accessed via
walking due to the dangers associated with driving
under the influence (Gayah et al., 2022).
• Demographics. People who reported that they
commute by non-motorized means are vastly more
likely to be observed in a pedestrian count, and
therefore a greater proportion of non-motorized
commuters is expected to increase pedestrian
counts, as observed by the positive coefficient in
the NB regression model (Griswold et al., 2019).

4.2 MBRP model

Under the framework discussed in the methodology
section, a MBRP model splitting over the natural
logarithm of parcel count was developed. Due to the
relatively small dataset, the maximum depth of the tree

structure was limited to ensure that each of the sub-
models was trained on a sufficiently large dataset. This
also allowed for greater control over variable inclusion
based on statistical significance and consistency with
theory. The optimal split value of the parcel counts
was found to be 71, with 1 197 of the training dataset
observations registering parcel counts less than or equal
to the optimal split value. Figure 2 depicts the tree
structure for the MBRP model developed.

In comparing the estimation results between the NB
regression model and the MBRP model, land use
mix was found to be statistically insignificant in the
MBRP model and was therefore removed from the
model. The indicator variables for crosswalks and
bus stops were found to be insignificant in the higher
urban density model of the MBRP model, though the
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Figure 2MBRP model tree structure

coefficient for bus stops was consistent with theory,
and the contribution from the crosswalk variable was
minor enough to overlook given the magnitude of
its contribution in the lower urban density model.
Aside from these differences, the NB and MBRP
model coefficients take the same signs and indicate the
same relationships between explanatory variables and
pedestrian count outcomes.

The MBRP model allows for additional interpretation
of model coefficients between the sub-models, which
captures the difference in relationships between the
explanatory features and the pedestrian count outcome
as they vary with urban density. For example, based on
differences in the magnitudes of coefficients presented
in the second and third columns of Table 4, we
observe that pedestrian counts are more sensitive to
the presence of alcohol sales locations in denser urban
environments. On the other hand, pedestrians in denser
urban environments are less sensitive to the presence
of sidewalks, crosswalks, bus stops, and greater speed
limits than their counterparts in less dense urban areas.
Across all models, the coefficients estimated for the
proportion of non-motorized commuters and the natural
logarithm of AADT are approximately equal, which
indicates that pedestrians everywhere are about as
sensitive to both variables, regardless of urban density.

4.3 Model comparison

Following model development, both models’
cumulative residuals were evaluated over the testing
dataset. The results were plotted on a CURE plot
(Figure 3) with the 95% confidence interval from
the NB regression plotted to demonstrate how the
MBRPmodel compares to the ‘baseline’ NB regression
model. Overall, we can tell that both models are robust,
plotting nearly all observations within the confidence
interval. From the CURE plot, we see that for lower
count values predicted, the cumulative residuals are
about equal across both models. Both models appear

to underpredict observations of approximately 200
pedestrians, though the residuals for the MBRP model
are smaller. The trend of smaller residuals can be
observed over most of the predicted range for the
MBRP model, indicating a generally better fit for the
data than the NB regression model.

The models were also tested for goodness of fit by
standard error measurements to determine how well
the models predict the pedestrian counts relative to the
observed pedestrian counts in the test dataset. Table 5
presents the goodness of fit statistics for both models,
where the better performance measure is bolded. To
better depict the differences between the models, the
goodness of fit statistics are presented for arbitrarily
determined low-, mid-, and high-count ranges, as well
as over the entire test dataset. Due to the nature of
MAPE and the presence of zero-count observations,
MAPE could not be applied to the low-count range,
nor the full test dataset. In other studies, MAPE has
been applied to zero-count locations through either log-
transformation or by adding a negligibly small value
to zero-counts. In this case, neither adjustment was
applied to avoid artificially inflating the percentage
error of zero-counts, for which any predicted value
other than zero would incur immense errors.

Based on the AIC presented in Table 4, we find that
the MBRP model is an overall improvement over the
traditional NB regression model. But the statistics
presented in Table 5 allow formore distinct quantitative
results. Over the whole test dataset, the MAE and
RMSE both indicate that the MBRP model predicts
more accurately than the NB regression model by
about 8.0% and 4.4% respectively. This trend is
consistently observed across the low- and high-count
ranges, where MAE improves by 14.0% and 7.2%,
respectively, and the RMSE is improved by 22.2%
and 6.3%, respectively. The exception to the trend
is in the mid-count range, where the MAE improves
by 3.9%, but the RMSE increases by 17.1%. This
anomaly can be attributed to a single predicted value
with a large residual, which is then highly weighted in
the RMSE calculation due to the squared component
of the error statistic. The evaluation that the MBRP
model outperforms the NB regression model even in
the mid-count range is further supported by the 9.0%
improvement in the MAPE, which is also observed in
the high-count range.

Accounting for evidence provided by the AIC as found
in model development, the CURE plots generated
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Figure 3 Test data cumulative residual plots

Table 5 Goodness of fit statistics

Low-Count (0–100)
(393 observations)

Mid-Count (101–1000)
(82 observations)

High-Count (1000+)
(13 observations)

Full Test Dataset
(488 observations)

NB MBRP NB MBRP NB MBRP NB MBRP
MAE 47.40 40.78 256.10 245.99 2116.33 1964.48 137.58 126.51
MAPE n/a n/a 118% 109% 61% 55% n/a n/a
RMSE 125.24 97.49 409.42 479.26 3058.23 2865.33 538.47 514.75
Bolded values indicate best performing model.

for both models, and the goodness of fit statistics
as calculated over the test dataset, the MBRP model
improves upon the traditional NB regression model
in predicting pedestrian count values. Though error
evaluations differ in quantity, based on trends in
the MAE, RMSE, and MAPE indicate that using
MBRP to model pedestrian count data can improve
prediction accuracy by approximately 10% compared
to traditional NB regression models.

5 Conclusions

This study investigates a possible improvement
in pedestrian exposure modeling, by augmenting
traditional NB regression models with a tree-based
machine learning component, the MBRP algorithm.
It was hypothesized that the inclusion of the MBRP
algorithm would not only improve predictive accuracy
but would allow for additional interpretation of
the relationships between explanatory variables and
pedestrian exposure estimates which may differ
contextually in ways that are not known a priori. Data

from North Carolina is subdivided into training and test
dataset. Training data is applied to develop a traditional
NB regression model and anMBRPmodel, and the two
models’ predictive performance is assessed based on
the predictions for the test dataset.

The use of the MBRP algorithm resulted a model
indicating that a pedestrian count’s relationship with
explanatory variables varies with the natural logarithm
of parcel count, which suggests that pedestrian counts
in denser urban environments are more sensitive to
presence of alcohol sales locations, and less sensitive
to presence of sidewalks, crosswalks, bus stops, and
roadways with higher speed limits. These trends are
not observable through traditional NB models, which
are typically more of a ‘one-size-fits-all approach
which does not consider how the relationships between
explanatory variables may vary with context.

The model developed using the MBRP algorithm
improved predictions of pedestrian counts over the
test dataset by approximately 10% as measured by
MAE,MAPE, and RMSE. Themodel’s fitness was also
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shown to be an improvement over the NB regression
model through lower AIC and the MBRP plotting more
points within the confidence interval and nearer to zero
on a CURE plot.

The proposed use of the MBRP algorithm to
improve pedestrian exposure estimates overcomes the
shortcomings of traditional NB regression methods
by capturing relationships between explanatory
variables in context. Fortunately, the methodology
is quite transferable to other regions outside of
North Carolina, given that the MBRP algorithm
inherently contextualizes coefficient estimates and
naturally defines its own optimal splitting points.
However, given the difficulty of retaining statistically
significant variables across sub-models in the MBRP
model, it should be noted that the variables selected
for the MBRP model presented in this paper may
not be statistically significant in another region.
Further optimization may be required for application
elsewhere. The MBRP algorithm and other machine
learning methods are also known to be ‘data hungry’,
and therefore the predictive power of this model may be
limited by the size of the available dataset. In practice,
a larger dataset would yield better results and could
allow for a deeper understanding of the relationships
between explanatory variables, which may be more
complex than the restricted model presented in this
paper suggests.
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