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Abstract: The design and operations of signalized intersections are critical for the safety and mobility
of all road users. Traditionally, video detection systems have surpassed conventional inductive loops
in vehicle detection, offering advantages such as user-friendly interfaces, easy installation, versatile
applications, and cost-effective maintenance. Recent technological advancements have expanded the
capabilities of video detection systems to include automated pedestrian detection. Pedestrian timing
treatment at signalized intersections typically involves two approaches: assuming pedestrian demand
during each phase (pedestrian recall operations) or activating pedestrian demand when a button is
pressed. Automated Pedestrian Video Detection Systems (APVDS) represent a newer approach where
pedestrian calls are automatically initiated upon detecting pedestrians within the detection zone. Both
pedestrian push buttons and APVDSs have their pros and cons. While push buttons can cause confusion
and incorrect usage among pedestrians, APVDSs theoretically address these issues by autonomously
determining pedestrian phase needs. However, challenges arise due to differing pedestrian behaviors
compared to vehicles, potentially leading to missed or false calls and unsafe pedestrian actions.
This study examines the impact of two APVDS issues: missed pedestrian calls and false pedestrian
calls. It also compares the effects of incorrect calls under various operational strategies, including
APVDS with and without controller pedestrian recycle, pedestrian recall operations, and push-button
operations, with and without pedestrian recycle, across different times of the day to replicate varying
vehicular and pedestrian demands. Using Vissim microsimulation software and Surrogate Safety
Assessment Model (SSAM), experiments were conducted to replicate field conditions closely. This
microsimulation approach enables the measurement and analysis of missed and false calls’ impact on
surrogate safety measures, providing valuable insights challenging to obtain in real-world conditions.
The results contribute to pedestrian traffic signal strategies and enhancing pedestrian safety at signalized
intersections in urban environments.
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1 Introduction

Signalized intersections play a vital role in urban
transportation systems by ensuring the safe and
efficient movement of both pedestrians and vehicles.
Thus, the design and operations of signalized
intersections are crucial for safety and mobility of all
users. Traditionally, pedestrian signal operations have
followed two methods: either automatically recalling
pedestrian demand during each phase, assuming
constant pedestrian presence, or requiring pedestrians
to press a push button to activate a pedestrian
phase. Recently, automated pedestrian video detection
systems (APVDSs) have been introduced, which
replaces the need for push buttons by automatically
detecting pedestrians in designated zones and placing
the necessary phase call.

APVDSs use strategically placed overhead cameras
to capture images of pedestrians at intersections.
These images are then analyzed using advanced vision
processors and machine learning algorithms, which
identify pedestrians within virtual detection zones.
This automated system provides significant data about
detected pedestrians, yet its accuracy can be influenced
by factors such as the quality of the machine learning
algorithms, lighting conditions, weather, and camera
placement.

As is common with most signal technology, both
pedestrian push buttons and APVDSs have their
advantages and disadvantages. Push buttons may cause
confusion among pedestrians, resulting in incorrect
usage and jaywalking. APVDSs theoretically address
these issues by determining the need for a pedestrian
phase without requiring pedestrians to press the push
button. However, challenges arise because pedestrians
exhibit different behaviors compared to vehicles, and
missed calls can lead to unsafe pedestrian behaviors.
For instance, vehicles are always oriented in the
direction of travel, whereas pedestrians do not always
wait to cross oriented towards the crosswalk of interest.

It is worth mentioning that initially video detection
systems were primarily developed for vehicle detection
and have been the subject of extensive research
so far. Despite technological advancements, these
systems still face challenges in adverse weather and
low-light conditions. While many studies have
examined the performance of video detection systems
for vehicles (Chitturi et al., 2010; Grenard et al., 2001;
Martin et al., 2004; Medina et al., 2009, 2008; Rhodes
et al., 2005), there has been less focus on the accuracy

issues associated with APVDSs for pedestrians (Larson
et al., 2020). Research has generally evaluated APVDS
performance (Gavric et al., 2024a,b).

Wu et al. simulated vehicle-pedestrian conflicts
in Vissim to examine whether SSAM and Vissim
can effectively estimate field conflicts at signalized
intersections Wu et al. (2018). While there is extensive
research investigating pedestrian-vehicle conflicts in
microsimulation, no study has thoroughly quantified
the impact of false or missed pedestrian video detection
calls on surrogate safety measures.

To address this gap, our study proposes a novel
approach to analyzing the effects of missed and
false pedestrian calls on surrogate safety in a
microsimulation environment. Understanding these
impacts is critical for enhancing the safety of traffic
signal operations and urban planning process. This
research aims to explore the consequences of missed
pedestrian calls (where a pedestrian is present but not
detected) and false pedestrian calls (where a phase
call is placed without a pedestrian being present) on
surrogate safety at signalized intersections.

Specifically, our objectives include comparing the
effects of missed and false calls in automated pedestrian
detection, pedestrian recall operations, and push button
operations, with or without the pedestrian recycle
feature of the controller, at various times of the day and
under different pedestrian and vehicular demands on
surrogate safety measures. Amicrosimulation software
Vissim is coupled with Surrogate Safety Assessment
Model (SSAM) to conduct experiments, allowing us
to measure and analyze the impact of these events in
a controlled environment that closely replicates real-
world conditions.

The remainder of this paper is structured as follows:
first, describe our methodology, including data
collection, microsimulation setup, and experimental
procedures. We then present and discuss our
experimental results in detail. Finally, we conclude
with remarks and suggestions for future research
opportunities.

2 Methodology

To achieve the objectives outlined in the introduction,
a framework consisting of Vissim, video detection
inaccuracies, and SSAM was created.
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2.1 Common pedestrian timing treatments

As mentioned previously and shown below in Figure 1,
we examine five pedestrian signal treatments in terms
of surrogate safety.

Firstly, APVDS can be integrated with pedestrian
recycle (APVDS_PR) settings when the walk and
flashing don’t walk times are shorter than the
maximum green time for the corresponding phase.
The pedestrian recycle setting allows the pedestrian
interval of a phase to begin after the green light for
the concurrent vehicular phase has started, provided
the pedestrian clearance times can still be fully
accommodated (NCHRP, 2022) . In Traffic Signal
Control Strategies for Pedestrians and Bicyclists
NCHRP report (NCHRP, 2022) it is advisable to couple
pedestrian recycle with ‘force coord pedestrian yield
option’. In that way, the pedestrian phase will be served
again only if there is a vehicular call on the coordinated
phase that causes the coordinated phase to be extended.
This setup ensures that the pedestrian phase is served
again only if a vehicular call on the coordinated phase
extends the coordinated phase. However, it is important
to note that the intersections examined in this study
were not coordinated, so the ‘force coord pedestrian
yield option’ will not be included in our analysis.

Conversely, the APVDS without pedestrian recycle
(APVDS_NPR), as also shown in Figure 1, does not
serve pedestrians who arrive late, making them wait
until the next cycle or relevant phase.

The third pedestrian timing treatment involves push
buttons coupled with a pedestrian recycle feature
(PB_PR), where pedestrians are only served if they
press the button to request the service. In many cases,
pedestrians fail to press the button immediately upon
arrival at the intersection, resulting in longer waiting
times than necessary, but in this study, we assume that
all pedestrians in push button scenarios will press the
push button as soon as they arrive at the intersection.

The fourth treatment involves pedestrian push buttons
without pedestrian recycling (PB_NPR). Thus,
pedestrians will be served only if they press the push
button before the start of the concurrent phase.

The fifth treatment is pedestrian recall (Recall), which
means that pedestrians will be served in each cycle
regardless of actual pedestrian demand.

2.2 Data collection

Besides investigating various pedestrian timing
treatments, the novelty of this study lies in its aim to
analyze two APVD systems to ascertain any significant
differences in their surrogate safety performances.
To achieve this goal, the authors collected pedestrian
video detection data from two intersections located in
Pittsburgh, PA.

These intersections feature two distinct video detection
systems. The first system, situated at Butler and
40th Street, utilizes a single fisheye camera. The
second system, located at Penn Avenue and 40th
Street, employs two cameras to detect both vehicles
and pedestrians. Pedestrian operations recorded on
video betweenMay and November 2022 were analyzed
as part of this study. For Penn/40th system, data
collection required on-site visits to install a hard
drive inside the signal controller cabinet. In contrast,
Butler/40th videos were accessed by downloading the
necessary files from the vendor’s online platform.
Following the collection of a comprehensive dataset,
a randomly selected subset of video data spanning 20
hours was utilized for subsequent analysis. Within
this 20 hour subset, pedestrian calls were classified
as correct, missed, or false calls through manual
observation of vendors’ videos by the authors. A
summary of the gathered data is presented in Table 1
below. It is important to note that (Larson et al., 2020)
also found low accuracy (~25% correct calls) when
testing the system installed at Butler/40th. Their study
demonstrated that thermal sensors provided higher
accuracy at the intersection.

The authors observed that false and missed calls
originate from system limitations in interpreting
pedestrian presence and behavior. At Penn/40th,
missed calls occur when pedestrians move out of the
detection zone, as the system assumes they remain
stationary. Conversely, at Butler/40th, the system is
more sensitive and prone to false detections, triggered
by factors like vehicle turns, bicyclists, shadows, and
reflections.

The authors also investigated the number of crashes
at these intersections over the last three years (2021-
2023), and it appears that both intersections had crashes
involving pedestrians (Figure 2). Therefore, it is crucial
to test automated pedestrian detection technologies in
terms of safety before deploying them in the field, given
the historical crashes involving pedestrians at these
locations.
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Figure 1 Common pedestrian signal timing treatments

2.3 Microsimulation model

To model missed and false calls of different APVDS,
Vissim, as a well-knownmicroscopic traffic simulation
tool, is employed. It operates on a time-step and
behavior-based framework designed to emulate traffic
patterns. The simulation relies on a psychophysical
car-following model derived from the Wiedemann
model, which assumes that a driver can exhibit one
of four driving behaviors: free driving, approaching,

following, and braking.

To assess the safety implications of APVDS accuracy
and other pedestrian timing treatments, the authors
constructed a Vissim model encompassing six
intersections, meticulously designed to mirror real-
world conditions (see Figure 3). Notably, this study
concentrates on two intersections within the model,
while the remaining intersections serve a supportive
role in generating more authentic traffic arrival patterns
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Table 1 Summary of the collected APVDSs data

Intersection Observed
corner

% Correct
calls

% Missed calls % False calls Total
analyzed
hours

Total number of
pPedestrian

Calls
Butler/40th N-E 40.8 3.0 56.2 20h 2091

S-E 41.3 4.7 54.0 1624
N-W 38.5 3.4 58.1 2327
S-W 37.0 17.8 45.1 1617

Average 39.4 6.6 54.0 Total: 7659
Penn/40th N-E 32.9 56.5 10.8 20h 260

S-E 29.8 68.8 1.4 215
N-W 26.7 54.0 19.3 176
S-W 13.9 78.0 8.2 195

Average 26.4 64.0 9.6 Total: 846

Figure 2 Crash data (City of Pittsburgh Crash Data Dashboard)

and enhancing the overall validity of the simulation
environment. Furthermore, to ensure unbiased results,
all scenarios were simulated using identical network
geometry and traffic parameters. Speeds in the
simulation correspond to actual field speeds, with
the speed limit set at the 85th percentile of observed
speeds. Regarding pedestrian movements, we adhered
to the MUTCD standard, using a pedestrian speed of
3.5 ft/s. In this study, we did not modify the default
Wiedemann model parameters for driving behavior
because the default parameters are widely accepted in
traffic simulation studies. Also, we did not attempt to
calibrate any driving behavior-related parameters, and
the microsimulation model was successfully calibrated
using the default car-following model parameters.

The Vissim simulation model of the analyzed network
has been properly calibrated and validated (Figure 4).
The turning movement counts calibration for each
intersection, for both vehicular and pedestrian demand
is shown in Figure 4. The model was further calibrated
by using the GEH statistic, which compared the
input volumes from the field to the output volumes
generated by running the simulation. The GEH statistic
consistently remained below four (a recommended
threshold value (Silgu et al., 2022) for all movements
at every intersection.

As previously indicated, the second phase of the
methodology entailed gathering field data and
evaluating the accuracy of two APVDSs. Following
this, pedestrian calls were categorized, and vehicle
volumes were recorded for various scenarios. These
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Figure 3 Simulation model and installed APDSs

Figure 4 Calibration results

pedestrian calls and vehicular data were then inputted
into Vissim for further analysis.

Figure 5 displays the three pedestrian classes defined
within Vissim, designated as follows: 1. Correct
pedestrian calls, 2. False pedestrian calls, and 3.
Missed calls. Subsequently, within the vehicle
compositions or relative traffic flows, the average
percentage of each type of pedestrian call was
delineated within the respective flow category (see

Figure 5). Given the differing average percentages of
correct, false, and missed calls for the two analyzed
APVDSs, distinct relative flow categories were
established: one for the each APVDS (see Figure 5).
It is essential to acknowledge that false or ‘ghost’
pedestrians are video ‘events’ typically triggered by
permanent objects, reflections, or shadows. Hence,
when allocating pedestrian volumes to each pedestrian
crosswalk, the field volumes (Vp−adj) were adjusted
to account for the proportion of false calls (F), as
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Figure 5Modeling APVDS inaccuracies in microsimulation

illustrated in Figure 5. Put simply, false pedestrians
were incorporated as additional pedestrians that would
not undergo subsequent evaluation.

2.4 Surrogate Safety Assessment Model

The Surrogate Safety Assessment Model was
developed to estimate frequency and severity of
various types of conflicts by utilizing simulated
trajectories (Gettman & Head, 2003). SSAM is
well-established tool used in many studies (Gettman
& Head, 2003; Stevanovic et al., 2015). Two
key parameters utilized by the model are Post-
Encroachment Time (PET) and Time-to-Collision
(TTC). Post-Encroachment Time measures the
minimum interval between when one vehicle leaves
a conflict point and another vehicle arrives at the same
point. If PET values fall below the default threshold in
SSAM, there is a potential risk of collisions. Figure 6
illustrates the details of PET and TTC.

Time-to-Collision (TTC) represents the minimum time
remaining before two vehicles collide if they continue
on their current paths and maintain their speeds.
Similarly, when TTC values are below the default
threshold in SSAM, there is a heightened risk of
collisions. It is worth mentioning that SSAM uses
default values of 1.5 seconds and 5 seconds for TTC and
PET, respectively. These values were found to be the
thresholds that provide the highest risk safety analysis
through SSAM (Alzoubaidi et al., 2023; Gettman et al.,
2008). Thus, these were the thresholds used by the
authors in this study.

2.5 Experimental setup

Many scenarios could have been created to evaluate
the impact of APVDSs’ accuracy on surrogate safety.
However, the authors have focused on three major

criteria shown in Figure 7. It should be mentioned
that in the push-button scenarios, it is assumed that
every pedestrian arriving at the intersection will press
the push button; therefore, there is not any missed calls.
On the other hand, pedestrian recall serves pedestrians
once every cycle regardless of their physical presence
at the intersections.

Twenty scenarios (5 pedestrian treatments × 2 vehicle
demand periods × 2 VDS types) were prepared and
tested (Figure 7 ). Each of the scenarios was run
with five different random seeds to obtain statistically
valid representations of the results. All simulation runs
were executed with a 10 Hz simulation resolution for
one hour (evaluation time) and five minutes (warm-up
time). Trajectory files (.trj) were exported from Vissim
and processed in SSAM to estimate surrogate safety
measures. The trajectories related to pedestrian and
vehicle conflicts were filtered in SSAM software based
on the intersection they belong to.

To ensure accuracy and robustness in the analysis,
various metrics were considered. These included
the number of conflicts, as well as the time-to-
collision (TTC) and post-encroachment time (PET).
Additionally, the simulations were designed to account
for different traffic volumes and pedestrian demand to
reflect real-world conditions accurately.

3 Results and Discussion

The evaluation was conducted using some of the
surrogate safety measures (number of conflicts, TTC,
PET) and some well established performance metrics
such as average pedestrian delay for overall pedestrians
(correct and missed) and missed pedestrians.

On the left side of Figure 8 , the average total
number of vehicle-pedestrian conflicts is presented,
along with average number of right and left turnig
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Figure 6 a) post-encroachment time (PET) and b) time-to-collision (TTC)

Figure 7 Experimental setup

vehicle conflicts with pedestrians. It is evident that
the lowest conflicts occur with the Recall treatment at
Butler/40th, an intersection equipped with VDS that
generates many false calls. Conversely, at intersections
with overall lower pedestrian demand and more missed
calls, the APVDS treatments perform better in terms of
conflict mitigation. The average number of conflicts
we reported specifically refers to vehicle-pedestrian
conflicts.

Another reason pedestrian recall and PB_NPR yield the
best results is because, in our simulation, the pedestrian
green phase does not extend for the full duration
of the maximum green for the concurrent vehicle
phase. Consequently, some vehicles turn without being
stopped due to pedestrian presence. In scenarios with
pedestrian recycle, the flashing ‘don’t walk’ interval
can occur twice with shorter walk times. However,
it is important to note that the absence of conflicts in
simulation does not guarantee that pedestrians would
not jaywalk in reality. Simulated environments, while
useful for controlled analysis, cannot fully capture the
complex behaviors and decision-making processes of
pedestrians in real-world settings.

Additionally, pedestrian volumes at the studied
locations should be considered: approximately 20
pedestrians per hour at Penn and 40 pedestrians
per hour at Butler. Given these volumes, the
occurrence of 3-7 conflicts per number of pedestrians
crossing seems significant. The conflicts include both
crossing conflicts involving right-turning vehicles and
pedestrians, as well as permissive left turns where

applicable (Figure 8).

On the right side of Figure 8 , the maximum speed
during conflicts is shown. This represents the highest
speed of either vehicle throughout the conflict (i.e.
while the TTC is below the specified threshold). It
can be observed that the highest maximum speed
occurs at Butler/40th in the PB_PR scenario, closely
followed by the PB_NPR scenario. At Penn/40th, the
APVDS_NPR and APVDS_PR scenarios exhibit the
highest maximum speeds, making them the less safe in
terms of conflict speed.

For instance, when we examine pedestrian delay
for missed and overall pedestrians at the Penn/40th
intersection (see Figure 9), we observe delays
exceeding 100 seconds. Such significant delays
are concerning because, according to both the
HCM 2000 and the NCHRP Guide to Pedestrian
Analysis from 2022, delays of this magnitude
suggest a high likelihood of pedestrians resorting to
jaywalking (Reilly, 1997; Ryus et al., 2022) (Table 2).
In real-world scenarios, pedestrians facing long wait
times might become impatient and choose to cross the
street unsafely, increasing the risk of accidents.

To fully understand the impacts of APVDS on surrogate
safety, it is important to also consider the delays
experienced due to missed pedestrian calls. These
missed pedestrians occur only in APVDS scenarios,
as it is assumed that all pedestrians press the push
button in PB scenarios (Figure 9). The delay for
missed pedestrians is high in the APVDS scenarios,

8
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Figure 8 Average number of conflicts

Table 2 Level-of-service criteria and likelihood of non-
compliance based on for pedestrian delay

LOS Control delay Likelihood of
non-compliance

A 0–10 Low
B 10–20 Low
C 20–30 Moderate
D 30–40 Moderate
E 40–60 High
F >60 Very high

exceeding 150 seconds at the Penn/40th intersection
(as shown in Figure 9). Understandably, this delay
is considerably lower at the Butler/40th intersection,
where the system has a lower rate of missed pedestrian
calls. Consequently, the overall pedestrian delay is
comparable across all pedestrian signal treatments at
the Butler/40th intersection.

Before delving into the PET and TTC results, it
is important to note that the orange ‘X’ symbol in
Figure 10 and Figure 11 represents the mode, while
the blue circle represents the median for each scenario.
It can be observed that the mode and median values
are generally similar for both TTC and PET. When
the mode (the most frequent value) and the median
(the central value) are close or similar, this typically
suggests that the dataset is not heavily skewed to one
side (left or right). This may indicate that the data
is normally distributed or, at the very least, roughly
symmetric.

Figure 10 shows average TTC in seconds across
different scenarios. At both intersections, TTC values
generally tend to be lower during peak traffic demands
compared to off-peak, indicating that collisions are
more likely during busier times.

At Butler/40th, the APVDS_NPR and APVDS_PR
treatments have higher TTC values during off-
peak hours. The PB_NPR treatment shows the
lowest TTC during off-peak hours, indicating higher
collision risk compared to other treatments. During
peak hours, the Recall treatment shows the highest
TTC, while APVDS_PR has the lowest, indicating
varied effectiveness based on traffic volume. The
relatively low performance of PB_NPR during off-peak
hours at Butler/40th is notable and warrants further
investigation.

At Penn/40th, Recall treatment also exhibits high TTC
values during off-peak hours, similar to Butler/40th,
indicating consistent performance across different
locations. The high TTC of Recall treatment across
both intersections and traffic demands suggests it is
particularly effective and reliable.

Figure 11 shows the average Post-Encroachment
Time (PET) in seconds for different pedestrian timing
treatments at two intersections: Butler/40th and
Penn/40th. PET is a crucial safetymeasure representing
the time interval between a vehicle and a pedestrian
crossing the same point; higher PET values indicate
safer conditions as they reflect greater separation
between vehicles and pedestrians.

However, the differences in PET values between the
intersections also highlight that intersection-specific
factors can influence the effectiveness of pedestrian
timing treatments. For instance, variations in traffic
volume, pedestrian flow, signal timing configurations,
and physical layout could all impact how well a
particular treatment performs. Transportation agencies
should consider the unique characteristics of each
intersection, including traffic patterns, pedestrian
behavior, and physical design, to optimize safety
outcomes.

9
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Figure 9Missed and overall average pedestrian delay

Figure 10 Average time-to-collision

Figure 11 Average post-encroachment time

4 Conclusions

This study presents a thorough evaluation of
inaccuracies in automated pedestrian detection
within a high-fidelity microsimulation environment,
focusing on their implications for safety measures at
signalized intersections. It marks the first instance
in literature where both missed and false pedestrian
calls were adequately simulated and assessed, offering
crucial insights into pedestrian safety at signalized
intersections. Through extensive evaluation, the

following key findings were established:

This research addresses a gap in the existing literature
by introducing a novel methodology to evaluate various
APVDS systems alongside alternative pedestrian signal
treatments. Its practical significance lies in aiding
transportation agencies in assessing APVDS safety
through microsimulation. The primary limitation of
this study is that the results cannot be generalized to
all APVDSs, as they may have different missed and
false call percentages compared to those considered in

10



Gavric et al. | Traffic Safety Research vol. 6 (2024) e000073

this study. Future research should explore the safety
aspects of different automated pedestrian systems.
Additionally, it should consider the percentage of
pedestrians who do not press the push button and
compare field-observed SSMs with the outputs from
SSAM.
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