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Recognizing the fact that the information from historical crash data cannot sufficiently 
reflect the risk level of target intersections under the current driving populations, some 
traffic safety researchers proposed to use various surrogate measures of safety (SMoS) 
from either roadside video records or simulation results for estimating near-crash 
conflicts and performing proactive safety assessment. Along the same line of research but 
taking advantage of the high-quality drone-based image-recording data (DIRD), this 
study presents a new effective surrogate variable, named ‘Extra Brake Required to Avoid a 
Crash’ (EBRAC), which offers a convenient, reliable, and direct tool for traffic 
professionals to perform the same analyses and risk rankings for resource allocation. The 
proposed new surrogate variable, featuring its direct relevance to road users’ maneuvers, 
e.g. braking from high-precision time-varying braking rate information uniquely 
available from the DIRD, has reflected crash-prone contributors attributed to driving 
behaviors and intersections’ overall environments. Hence, after proper field calibration, 
the proposed method based on EBRAC is directly applicable for estimating near-crash 
conflicts at other intersections in the same region without further adjustment or 
employing other advanced statistical techniques to integrate the information from 
multiple safety surrogates. The effectiveness of the proposed method with the new safety 
surrogate has been evaluated with field data from five intersections and 20 approaches; 
the results confirm that its performances, evaluated with two popular statistical tests, are 
either comparable to or better than the two state-of-the-art methods. 

1. Introduction   

To optimize the allocation of limited resources for im-
proving safety at candidate intersections, traffic safety pro-
fessionals have invested substantial effort in developing 
effective methods for assessing safety and prioritizing in-
tersections based on their risk levels. In developing such 
methods and conducting the essential analysis, an intersec-
tion’s crash history has been widely viewed by the traffic 
community as essential data (AASHTO, 2014). The random 
fluctuating nature of crash data reflected in the historical 
pattern and the lack of sufficient information to reflect 
the risk-prone behaviors of the current driving populations 
for the design of countermeasures, however, renders some 
safety researchers to pursue various alternatives for the 
same purposes (Zheng et al., 2014). The design of various 
types of surrogate variables with the traffic conflict tech-
nique (TCT) to capture near-crash conflicts is one of the 
state-of-the-art methods increasing popularity in the traf-
fic safety community. For instance. It has been used for 
safety assessment and improvement for decades in Sweden 
(Laureshyn & Várhelyi, 2018), the Netherlands (Kraay et 

al., 2013), and Canada (Brown, 1994; Cooper, 1984; Sayed 
& Zein, 1999; Zheng et al., 2014). Note that among various 
definitions of ‘conflict’ among a wealth of studies, this 
study applies the definition that was defined collectively by 
the experts from the safety research community (Amund-
sen & Hyden, 1977). Specifically, this study has applied the 
definition from the consensus of scholars and practitioners 
in 1977 – ‘A traffic conflict is an observable situation in which 
two or more road users approach each other in space and time 
to such an extent that there is a risk of collision if their move-
ments remain unchanged.’ (Amundsen & Hyden, 1977) 

The notion of TCT, firstly proposed in General Motors 
Laboratory (Perkins & Harris, 1967, 1968) and enhanced in 
various follow-up studies (Migletz et al., 1985; Zegeer & 
Deen, 1977), is to deploy human observers to identify un-
safe vehicle maneuvers within a target intersection. Recog-
nizing the subject nature of observations by the roadside 
observers and the resulting biases on the risk assessment, 
some researchers proposed the use of surrogate variables 
(Allen et al., 1978; Hayward, 1971; Laureshyn et al., 2010; 
Minderhoud & Bovy, 2001; Ozbay et al., 2008; Saccomanno 
et al., 2008) to measure near-crash conflicts which could, to 
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some extent, reflect the intersection’s risk level if measured 
reliable and precisely. 

Most surrogate variables reported in the literature are 
time-varying in nature, varying with the trajectories and 
interactions between a pair of vehicles, and mostly fluctu-
ating within a normal range, but may evolve to unsafe con-
ditions of a crash if swinging to the extreme level. Most of 
such surrogate variables for safety assessment in state-of-
the-art studies can be characterized into the following cat-
egories: 

Notably, different surrogate variables, depending on 
their target measurements, can only capture the type of 
near-crash conflicts from their respective perspective. 
Hence, to fully reflect all possible conflicts over time and 
reliably quantify the risk level of the intersection of in-
terest, a body of traffic researchers have proposed various 
methods to best use the information collectively revealed 
from the selected safety surrogates. Most of such proposed 
methods are developed along the following two lines: 

Note that despite the theoretical appeal of such surro-
gate-based methods for risk assessment, their effectiveness 
is conditioned on the quality and precision of the avail-
able data. Although the advent of new technologies offers 
a more reliable way such as automatic identification for 
extracting required measurements from roadside-mounted 
cameras (Autey et al., 2012; Ismail et al., 2009, 2010; Oh 
et al., 2009; Saunier et al., 2010; Saunier & Sayed, 2007, 
2008; Sayed et al., 2012; Songchitruksa & Tarko, 2006; Zaki 
et al., 2014), such data from the recorded images often can-
not offer the desirable level of quality and precision, due to 
homography constrained by insufficient or imprecise refer-
ences, occlusion of vehicles, and lens distortion (Ismail et 
al., 2013). 

Another alternative to have the information for estimat-
ing such conflicts is to employ microscopic traffic simula-
tions (Gettman et al., 2008). Such simulation-output data, 
despite the popularity in the state of the practice (Hummer 
et al., 2010; Kim et al., 2018; KLJ, 2018), are reliable only 
if the employed microscopic traffic simulation program has 
been rigorously calibrated with the field data to faithfully 
reflect the target driving populations’ car-following and 
lane-changing behaviors. However, the efforts involving 
data collection and rigorous parameter calibration may ex-
ceed the workload and cost associated with the direct mea-
surement of surrogate variables from the typical roadside 
cameras. Moreover, the behavioral mechanisms embedded 
in most existing microscopic traffic simulation software are 
proposed mainly for traffic delay and queue analysis, but 
not developed with the required details and precision to 
yield the fidelity sufficient for estimating the likelihood of 
having a crash or near-crash conflict. Nonetheless, some 
indices, due to their practicability in the fields, have been 
applied to real-world decades later. For example, DRAC, 
originally developed by the simulation community (Archer, 
2005; Darzentas et al., 1980; Saccomanno et al., 2008), has 
been applied in the real world by traffic safety experts due 
to technology advancements, e.g. conflict study for urban 
signalized intersections in Zheng et al. (2019) and Fu and 
Sayed (2021). 

1.1. Drone-based image-recoding data (DIRD)      

Unmanned Aerial Vehicles, or drones, featuring their 
functions to eliminate occlusion and imprecision caused by 
the obliqueness of side-mounted cameras, have emerged 
as a useful and reliable technology for various transporta-
tion applications. The high mobility, area-wide vision, and 
nearly orthogonal shooting angle offered by drones allow 
transportation professionals cost-effective means to ac-
quire reliable, and high-precision data over a wide range 
around a target transportation system. In reviewing the lit-
erature, it is noticeable that drone data have been best used 
in the area for vehicle detection and the extraction of traf-
fic states (e.g. speed) (E. N. Barmpounakis et al., 2016; Ke et 
al., 2017, 2018; Khan et al., 2017; Xu et al., 2017), followed 

• Time-to-Collision (TTC) is the time required for two 
vehicles to collide if they continue their present 
speeds and path, also denoted as Time-to-Accident 
(TA) in the work by Hayward (1971). Other extensions 
along this line include the Modified TTC (MTTC) 
(Minderhoud & Bovy, 2001), Time-Exposure TTC 
(TET), and Time-Integrated TTC (TIT) (Ozbay et al., 
2008). 

• Post-Encroachment Time (PET) is the time gap be-
tween the departure of the first vehicle from the com-
mon spatial zone (conflict area) and the arrival of its 
immediate follower (Allen et al., 1978). Its modified 
version has been applied to evaluate conflicts at road-
way crossings with oblique angles (Laureshyn et al., 
2010). 

• Deceleration Rate to Avoid Collision (DRAC), also 
known as the Required Braking Rate (RBR) the fol-
lower must exercise to avoid a crash when its vehicle 
is on the collision course with another (Saccomanno 
et al., 2008). 

• Analysis of the joint probability that applies the prob-
ability theory to project the crash frequency, based 
on the information reflected in each surrogate vari-
able and their relations with the others (Wang & Sta-
matiadis, 2014; Zheng et al., 2018, 2019; Zheng and 
Sayed, 2019; Tarko, 2019). For example, Zheng and 
Sayed (2019), grounded in the extreme value theory 
(Songchitruksa & Tarko, 2006; Zheng et al., 2024), 
proposed a method with bivariate extreme value the-
ory that can infer the unobservable crashes by fitting 
and extrapolating the multivariate distributions on 
conflicts defined by multiple surrogate variables. 

• Mapping of the safety indices that generates a single 
index for risk assessment by assigning proper scores 
for different measurements associated with a surro-
gate variable. For example, the Swedish Traffic Con-
flict Technique applies not only TTC but also the 
speed data to produce the final safety index (Lau-
reshyn & Várhelyi, 2018). Ismail et al. (2011) pro-

posed several methods that use the mapping function 
or scoring matrices to produce the Severity Index 
generated from various surrogate variables. 
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by the studies for traffic flow analysis (E. Barmpounakis et 
al., 2020; E. Barmpounakis & Geroliminis, 2020; Coifman 
et al., 2004), including lane-changing behavior, traffic mon-
itoring, and traffic surveillance. The DIRD has also been 
increasingly used in traffic safety, accident scene inves-
tigation (Ardestani et al., 2016; Pérez et al., 2019), and 
risk assessment of roadway segments such as on freeways 
merging areas, and hazardous obstruction identification, 
etc. (A. Y. Chen et al., 2020; P. Chen et al., 2017; Gu et al., 
2019; Sharma et al., 2017; L. Zhang et al., 2013; S. Zhang 
& Sze, 2024). However, such an effective technology and its 
produced high-precision data, DIRD (Huang et al., 2023), or 
other aerial-based data collection (Zheng et al., 2024) have 
not yet been fully utilized in intersections safety assess-
ments, and identification of near-crash patterns for the de-
sign of proper countermeasures. 

1.2. Research objectives    

In light of DIRD’s precision and reliability and the effec-
tiveness of the Traffic Conflict Technique with various sur-
rogates for safety analysis, the objectives of this study are 
to first shed the light on the DIRD’s effectiveness for mea-
suring existing safety surrogates in the literature and then 
propose a new surrogate variable for estimating near-crash 
intersection conflicts. The proposed new safety surrogate, 
named ‘Extra Brake Required to Avoid a Crash’ (EBRAC), 
can circumvent the need to apply additional methods for 
integrating information from multiple surrogate variables, 
and offer a direct yet effective way for reliable assessment 
of a target intersection’s risk level by best taking advantage 
of high-precision information uniquely available from the 
DIRD’s digitized results. 

The next section will first describe the procedures for 
computing safety surrogate variables with DIRD. This is fol-
lowed by a detailed presentation of the properties of the 
proposed EBRAC. The procedures for intersection risk as-
sessment constitute the cores of the following section. The 
results of a case study are presented to demonstrate the 
effectiveness of the proposed EBRAC for estimating near-
crash conflicts and for ranking risk levels among candidate 
intersections. Concluding comments and future research 
tasks are summarized in the last section. 

2. Computation of safety surrogate variables with        
DIRD  

The procedure to compute the safety surrogate mea-
sures, using DIRD, consists of the following three major 
stages: (1) field-data collection, (2) digitalized data gener-
ation, and (3) extraction of measurements for safety surro-
gate variables. A brief description of key tasks conducted at 
each stage is presented in sequence with the DIRD from an 
intersection (i.e. MD 198 and MD 650). 

2.1. Field-data collection    

To cover as large an area as possible with the precision 
sufficient to capture subtle changes in a vehicle’s maneu-
vers, drones shall be deployed above the intersection with 

Figure 1. Field-data collection (MD 198 at MD 650)        

an angle greater than 45 degrees and the height capped by 
400 (ft) as regulated by FAA (2021). By doing so, the approx-
imate coverage width is 600 (ft) for each approach. Figure 
1 shows an example (i.e. MD 198 at MD 650) of the drone-
based field data. 

2.2. Digitalized data generation     

With the collected field data, one can proceed to digi-
talize the data to a sufficient precision level for measuring 
safety surrogates (RCE systems, 2019). The data for the in-
tersection safety analysis and computation of most such 
surrogate variables includes (1) vehicle type; (2) time-de-
pendent position of vehicles; (3) time-dependent speed of 
vehicles; (4) vehicle’s time-dependent tangential accelera-
tion rate; and (5) vehicle’s time-dependent orientation. The 
sampling frequency of the video image is 30 (fps) with an 
increment of 0.0334 (sec). Figure 2 illustrates an example of 
video processing and data digitalization for a target inter-
section. 

2.3. Extraction of data for safety surrogate        
measures  

Figure 3 shows the operational flowchart for using the 
time-dependent vehicle’s motion variables to compute the 
safety surrogate variables for intersection safety analysis. 

2.3.1. Spatial polygon creation     

The original digitalized data from DIRD presents each 
vehicle with a single point, representing the centroid x-co-
ordinate and centroid y-coordinate of the vehicle. Consid-
ering the presence of different vehicle types in the traffic 
stream, the study margins the vehicle’s file by treating each 
vehicle as rectangular with its dimension consistent with 
the standard size of each vehicle type (see Figure 4). 

2.3.2. Collision course identification     

Note that in computing most safety surrogate variables 
(e.g. TTC and DRAC), each pair of vehicles for analysis 
should be on a collision course (Tarko, 2019). Such two ve-
hicles, at time , are on a collision course when there is a 
line connecting the following and the leading vehicles par-
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Figure 2. Processing and digitalization of the videos collected with a drone           

allel to their relative velocity  if both vehicles (
and , respectively) do not change their velocities (Tarko, 
2019). Thus, the collision course identification, as shown in 
Figure 5, can be identified with Eq. (1): 

where  and  are the relative velocities of the fol-
lowing and leading vehicles along the x-axis and y-axis; 
represents how long the vector of the relative speed, 
, extends from an edge point of the following vehicle; and 

 indicates one of the four boundaries used to define the 
leading vehicle. Note that the time variable  is dropped for 
brevity hereafter if without ambiguity. 

2.3.3. Safety surrogate variables computation      

Note that since most surrogate variables computed from 
DIRD are two-dimensional in nature, those widely used 
surrogate variables, such as TTC and DRAC, should be care-
fully computed. In addition to those two widely used vari-
ables, this study further proposes a new surrogate, Extra 
Brake Required to Avoid a Crash (EBRAC), which can better 
take advantage of the DIRD for intersection safety assess-
ment. To facilitate the following discussion, the key nota-
tions associated with safety surrogate variables are listed in 
Table 1. 
Time-to-collision (TTC).  TTC is defined as the remain-

ing time to incur a crash if two vehicles maintain the same 
speed on a collision course without further actions. Using 
the information from DIRD, one can define TTC with Eq. 
(2): 

where  and  denote the shortest distance to a collision 
and the relative velocity, respectively, between the leading 
and the following vehicles. 
Deceleration Rate to Avoid a Crash (DRAC).       DRAC is 

defined as the minimum deceleration rate to which the fol-
lowing vehicle needs to apply to avoid a crash with the 
leading vehicle. The work in Saccomanno et al. (2008) has 
developed DRAC’s one-dimensional form. This study firstly 
requests for a two-dimensional version of DRAC , 
which can be computed from the fundamental kinetics of 
motion when all velocities are projected onto the same di-
rection. Considering the orientation of the following vehi-
cle, one can compute  with Eq. (3): 

where the traveling distance for the following vehicle  to 
reach the conflict point can be calculated by using the in-
formation from TTC as shown in Eq. (4); and the speed of 
the following vehicle to avoid a crash, defined as the crash-
free speed (CFS) and denoted as , should equal the 
speed of the leading vehicle projected to the direction of 
the following vehicle (see Figure 5). One can compute the 
CFS with Eq. (5) by using the orientation of the following 
vehicle ( ) and the leading vehicle ( ) acquired from the 
DIRD: 

Therefore, two-dimensional DRAC can be computed with 
Eq. (6) 
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Figure 3. Process to extract the data for measuring safety surrogate variables           

Notably, Eq. (6) is consistent with literature applying 1-di-
mensional DRAC to rear-end risks (Saccomanno et al., 
2008) as long as terms in cosine are forced to zero. 
Extra Brake Required to Avoid a Crash (EBRAC).        It is 

recognized that the two widely used safety surrogate vari-
ables (i.e. TTC and DRAC) are proposed within the con-
straints of most available empirical data which often lack 
reliable information for computing each vehicle’s acceler-
ation/deceleration. As such, those surrogate variables may 
induce either miss-detections or false alarms with respect 
to the detection of conflicts for potential crashes. For in-
stance, the two scenarios illustrated in Figure 6 would out-
put the same TTC for each pair of vehicles, yet Scenario 1 
should be viewed as unsafe due to the lack of braking action 
by the following vehicle. 

To circumvent such limitations, some studies suggest 
grading different TTC under various traffic conditions, such 
as the Swedish Traffic Conflict Technique scores TTC differ-
ently under different speeds (Laureshyn & Várhelyi, 2018). 
Alternatively, this study presents a new surrogate variable, 
EBRAC, by taking advantage of the uniquely available in-
formation from the high-quality DIRD. By applying the ac-
tual brake rate computed from the DIRD, EBRAC, defined as 

“the difference between the actual brake rate of the following 
vehicle and its minimum required deceleration rate to avoid a 
crash (DRAC) with the leading vehicle”, can be formulated as 
follows: 

where  is the actual brake rate of the following vehicle 
at time t; and  is the deceleration rate of the follow-
ing vehicle to avoid a crash (DRAC). 

It can be observed that two vehicles are away from a 
collision when  if either the leading vehi-
cle accelerates or the following vehicle decelerates. In con-
trast, two vehicles are moving toward the collision when 

. Figure 7(a) depicts the time-dependent 
EBRAC values, highlighting an insufficient braking re-
sponse initially triggered by the vehicles at t1, which wors-
ens at t2 before the road users ultimately navigate out of 
the unsafe situation. Figure 7(b) shows the distribution of 
the proposed EBRAC, computed from the DIRD at an inter-
section over 60 minutes, which is centered at zero during 
normal operations. Note that the small sample points 
shown in a gray color represent those potential conflicts 
(or near-crashes) from the observed vehicle interactions, 
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Figure 4. Collision course between a pair of vehicles (adopted from          Tarko,  2019)  

Table 1. Key notations associated with the safety surrogate variables         

Notation Description 

The shortest distance to a collision between the leading and the following vehicles 

Relative velocity (vector) of the leading and the following vehicles 

Velocity (vector) of the following vehicle 

Velocity (vector) of the leading vehicle 

Velocity (vector) of the following vehicle given to avoid a crash 

Speed (scalar) of the following vehicle 

Speed (scalar) of the leading vehicle 

| | Speed (scalar) of the following vehicle given to avoid a crash 

Traveling distance of the following vehicle in a collision course 

Orientation of the following vehicle 

Orientation of the leading vehicle 

Minimum deceleration rate of the following vehicle to avoid a crash, DRAC 

Actual deceleration rate of the following vehicle 

Figure 5. Illustration of interactions between vehicles      
used in computing the DRAC      

Figure 6. An example that TTC cannot effectively       
distinguish the unsafe operation     
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Figure 7. Properties of EBRAC (a) time-dependent EBRAC; (b) The distribution of EBRAC using MD198 at MD650                
as an example    

where their EBRAC values at the time points of their inter-
action are below the predefined threshold. 

To more effectively measure the risk between vehicles in 
a collision course, one can take the two following actions to 
facilitate the computation of EBRAC: 

Integrating Eq. (7) with the computations of DRAC (Eqs. 
(3)-(6)) and considering only vehicle pairs toward colli-
sions, one can finalize the computation of EBRAC with Eq. 
(8): 

3. Properties of EBRAC with DIRD       

3.1. Motions of physics     

The proposed EBRAC seemly has the same physics di-
mension as DRAC, but the fundamental differences are: 

• Select only those toward collisions 
( ); and 

• Select those vehicle pairs with TTC lower than the 
threshold , to filter out those pairs with 
sufficient reaction time to take the necessary brake 
action, as used in the existing studies (Hogema & 
Janssen, 1996) 

• While DRAC has the dimension of deceleration, it is 
derived solely from speed and position data in the 
field, not from directly observed deceleration. In con-
trast, EBRAC utilizes high-precision deceleration 
data collected by drones, providing a more accurate 
reflection of braking behavior. 

• DRAC represents the required actions of road users 
but does not directly incorporate their immediate re-
sponses. In comparison, EBRAC captures the time-
varying actions of road users and their adherence to 
the required actions, offering a dynamic view of their 
responses. 
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3.2. Time-dependent properties    

Figure 8 illustrates a time-dependent EBRAC by using 
the same example presented previously. Likewise, a conflict 
is identified if the EBRAC between a pair of vehicles is be-
low a predefined threshold. One can observe from Figure 
8 that vehicle 151 is trapped in a collision course and it 
is identified as incurring a conflict by EBRAC at t = 223.36 
(sec). Then at t = 223.69 (sec), the driver sensed the risk and 
started to increase the brake rate, and at about t = 224.30 
(sec) the collision course was no longer at risk, because the 
reaction of the driver was sufficient to terminate the event 
(i.e. its EBRAC exceeded the pre-defined threshold). Such 
a sequence of actions is normally within a small time in-
terval, and the resulting EBRAC intuitively reflects the col-
lective manifestation of various involving factors, including 
the right-of-way violation, short perception-reaction time, 
braking capability of vehicles, and drivers’ aggressiveness. 
In brief, the proposed EBRAC has the following desirable 
properties for safety assessment: 

3.3. Boundary between conflicts and crashes       

Some SMoS can be extended to more sophisticated 
methods such as Extreme Value Theory (EVT) for TTC as 
the boundary between a crash and an ordinary conflict is 
at TTC = 0 which has a clear cut between crashed or not. 
However, EBRAC does not have such properties since once a 
conflict is not recoverable and becoming a crash, its EBRAC 
will deviate further from zero. 

4. Procedures for intersection risk assessment       

With the digitalized DIRD and the proposed safety sur-
rogate variable, EBRAC, one can apply the following pro-
cedures for the analysis and ranking of candidate intersec-
tions for safety assessment. 

Step-1: Identify the time-varying events from vehicle 
interactions and denote those as conflicts when their 
associated safety surrogate variables exceed the pre-
specified thresholds. Highway Safety Manual 
(AASHTO, 2014) has documented that about 90% of 
drivers decelerate at rates greater than  when 
facing an unexpected object. To reflect the required 
braking actions by the drivers, the optimal threshold 
for use in the conflict detection with EBRAC shall lie 
between -3.4 to 0.0 ( ), which can be precisely cal-
ibrated with field data. 
Step-2: Quantify an intersection’s risk level by collect-
ing its estimated “hourly number of conflicts.” 
Step-3: Select the threshold of EBRAC that yields the 
highest correlation between the “hourly number of con-
flicts” and the historical crash frequencies. 
Step-4: Evaluate the effectiveness of the calibrated 
EBRAC for intersection risk analysis with historical 
crash records, such an evaluation can first be done with 
respect to each approach (i.e. considers only the vehi-
cles’ interactions from the same approach of vehicles), 
and then extended to the entire intersection (i.e. con-
siders all the vehicles’ intersections within the func-
tional area of an intersection (AASHTO, 2014)). 
Step-5: Evaluate the EBRAC’s effectiveness with the 
following two popular statistical tests: 

Note that the proposed EBRAC and its parameter after 
successfully going through the above evaluation procedures 
(i.e. Steps-3 and Step-4) shall be ready to apply at other 
candidate intersections in the same region. 

5. Case study    

This section first presents the proposed EBRAC’s appli-
cations at a set of intersections, using the critical informa-
tion uniquely available from DIRD, and then compares its 
performance with two benchmark models for the analysis 
and ranking of the intersection risk assessment. 

5.1. Study site selection     

This study, to demonstrate the application of the pro-
posed model, includes five intersections selected based on 
crash data and annual average daily traffic (AADT) obtained 
from Maryland’s Open Data Portal (Maryland Department 
of State Police, 2024; Maryland Open Data Portal, 2024). 
The associated information and the recorded traffic volume 
from drones for each approach of each intersection are 

• EBRAC excerpts the merits of existing indicators. As 
shown in Eq.(8), at drivers’ inaction before reaction, 
it has the characteristic of DRAC, meanwhile the 
threshold (T’) of two-dimensional TTC, takes the role 
in the initial screening. 

• EBRAC generates a more precise period of conflict. 
As shown in Figure 8, after t = 224.30s, conventional 
DRAC still regards the condition as unsafe since it 
does not consider the driver’s reaction. As a result, 
DRAC could not call the end of the conflict until 
around = 225.7s; and 

• Most surrogate measures, such as DRAC and TTC, 
have higher thresholds to indicate an unsafe environ-
ment under wet pavement. However, EBRAC has the 
possibility that such may not be the case since it is 
the differences between ‘actual brake’ and ‘required 
brake (DRAC)’, so any danger from the wet pavement 
such that bio-mechanical deterioration will reflect by 
rise EBRAC itself, but may not be the threshold. More 
evidence may be needed, such as collecting data on 
wet pavement conditions. 

• Correlation test:  Evaluate the effectiveness of 
EBRAC based on the correlation between “hourly 
number of conflicts” and historical crash fre-
quency information (Allen et al., 1978; Brown, 
1994; Migletz et al., 1985; Ozbay et al., 2008; 
Zegeer & Deen, 1977; Zheng et al., 2019); and 

• Ranking test:  Evaluate the effectiveness of 
EBRAC with the Spearman rank correlation be-
tween the resulting ranks of the estimated 
“hourly number of conflicts” and the actual ranks 
revealed from the historical crash frequency in-
formation (Brown, 1994; Gettman et al., 2008; 
Migletz et al., 1985; Wang & Stamatiadis, 2014). 
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Figure 8. Time-dependent EBRAC with DIRD     

Figure 9. Geometries and speed limits of five selected intersections. (a) US301@Billingsley Rd; (b)             
US301@Harbour Way; (c) MD118@Wisteria Dr; (d) MD3@MD424; (e) MD198@MD650          

shown in Table 2. The geometries and speed limits of five 
intersections are demonstrated in Figure 9, covering the 
combinations of high-speed main street and high-speed 
minor street, high-speed main street and low-speed minor 
street, as well as medium-speed main street and medium-
speed minor street. 

5.2. Calibration and evaluation of EBRAC       

Similar to other safety surrogate variables, the effective-
ness of EBRAC varies with the calibration and selection 
of its parameter. The threshold for EBRAC, ranging from 

 to , in this study to identify unsafe 
operations (i.e. conflict) are analyzed; and the results for 
the intersection assessment are presented in Table 3. For 
instance, there are 8 conflicts detected by EBRAC with a 
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Table 2. Volumes and crash frequencies of the study sites         

Site Intersection 

Traffic volume (veh/hr) Crash frequency (# crashes/year) 

Intersectiona 

Approachb 

Intersection 

Approach 

From North 
From 
South 

From 
East 

From 
West 

From 
North 

From South 
From 
East 

From 
West 

1 
US301@ 

Billingsley Rd. 
3,550 1,022 1,097 682 528 8.33 3.33 2.67 1.67 0.67 

2 
US301@ 

Harbour Way 
4,190 2,349 2,184 204 451 10.20 3.40 6.00 0.60 0.20 

3 
MD118@ 

Wisteria Dr. 
2,261 1,151 718 429 483 2.80 1.20 0.80 0.40 0.40 

4 
MD3@ 
MD424 

5,979 2,469 2,506 749 439 15.40 7.00 7.00 0.60 0.80 

5 
MD198@ 

MD650 
1,983 383 525 649 484 4.00 0.80 1.00 1.00 1.20 

Note: 
a Traffic volume of each intersection is from AADT from Maryland Open Portal (2021) 
b Traffic volume of each approach of each intersection indicates the number of vehicles recorded from UAVs 
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Table 3. Calibration and application of EBRAC for the intersection assessment          

Background EBRAC with DIRD, 
# conflicts (hr-1) 

Site Intersection Crash frequency 
(# crashes/year) 

Threshold 
(-3.4 m/s2) 

Threshold 
(-3.0 m/s2) 

Threshold 
(-2.6 m/s2) 

Approach-based assessment 

1 US301 @ Billingsley Rd From North 3.33 7 8 12 

From South 2.67 4 4 7 

From East 1.67 8 14 29 

From West 0.67 1 1 3 

2 US301 @ Harbour Way From North 3.40 7 15 26 

From South 6.00 16 22 31 

From East 0.60 2 4 5 

From West 0.20 1 2 3 

3 MD118 @ Wisteria Dr From North 1.20 5 7 11 

From South 0.80 1 3 5 

From East 0.40 1 1 3 

From West 0.40 3 3 5 

4 MD3 @ MD424 From North 7.00 9 16 24 

From South 7.00 16 23 26 

From East 0.60 0 0 1 

From West 0.80 1 2 2 

5 MD198 @ MD650 From North 0.80 0 1 1 

From South 1.00 0 2 3 

From East 1.00 1 3 6 

From West 1.20 1 5 6 

Pearson Correlation 0.894 0.897 0.881 

P-value <0.001*** <0.001*** <0.001*** 

Intersection-based assessment 

1 US301 @ Billingsley Road 8.3 36 44 81 

2 US301 @ Harbour Way 10.2 37 55 95 

3 MD118 @ Wisteria Drive 2.8 22 25 37 

4 MD3 @ MD424 15.4 52 72 103 

5 MD198 @ MD650 4.6 15 24 34 

Pearson Correlation 0.946 0.986 0.928 

P-value 0.015* 0.002* 0.023* 

Note: One to three asterisks denote statistically significant at 0.05, 0.01, and 0.001, respectively. 

threshold of  among all vehicles traveling from 
North of Site 1. 

As shown in Table 3, the number of conflicts detected 
by EBRAC with different thresholds and the historical crash 
frequency are highly correlated, ranging from 0.881 to 
0.897. Noticeably, the threshold of  for EBRAC has 
the highest statistically significant correlation coefficient 
in the approach-based assessment. Similar results can be 
observed for the intersection-based assessment, where the 
threshold of  yields the highest correlation be-
tween the crash history and estimated conflicts. As such, 
the EBRAC with the threshold of  is used for as-
sessing and ranking the risk of candidate intersections in 
the ensuing section. 

5.3. Effectiveness for safety assessment risk       
ranking  

To evaluate the effectiveness of the proposed EBRAC for 
risk assessment and ranking of candidate intersections, this 
study has compared its performance with the following two 
state-of-the-art models: 

• The bivariate extreme value model (Zheng et al., 
2019) generates the predicted number of crashes 
based on the joint probability of multiple surrogate 
measures (i.e. TTC and DRAC). The adoption of ex-
treme value theory allows for extrapolating crash 
probabilities from the distribution of observed traffic 
conflicts. Within a bivariate framework, an event , 
characterized by the joint behavior of two SMoS 
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5.3.1. Approach-based assessment    

Table 4 shows the comparison results for the approach-
based assessment, revealing the following key findings: 

5.3.2. Intersection-based assessment    

Table 5 presents the comparison results between three 
models under the intersection-based assessment, some in-
teresting findings are summarized below. 

The better performance of the proposed EBRAC at the 
intersection-level risk assessment can be attributable to: 

6. Discussion   

6.1. Braking—human maneuver on vehicles      

The development of TCT has led to various SMoS beyond 
TTC and PET. Although those indices showing time and 
space proximities have shown effectiveness by validating 
through crash data (Laureshyn, 2023), the SMoS that has 
the deepest connection to the human-machine interface 
had been DRAC showing the required action on braking. 
This study has further developed along the same line by 
firstly constructing a two-dimensional DRAC that allows its 
application to general orientation but not limited to rear-
end and head-on potentials. The high-quality data from 
drone-generating road users’ instantaneous deceleration 
rates further allow the comparison of the required action 
(DRAC) and actual action (instantaneous deceleration), 
forming a simple approach to work directly on the human-
machine interface. 

In this regard, the authors would like to further argue 
that SMoS founded on space and time proximities may not 
be sufficient to describe the complete picture. Recently, 
there have been views to search ‘simple’ indicators, includ-
ing various dimensions (e.g. Laureshyn, 2023; Laureshyn et 
al., 2017). Such a view is logical when the original video 
sources are subject to homography and distortion (Ismail et 
al., 2013; Junghans et al., 2024); however, when the direct 
human maneuver is observable, it would be more resource-
ful to apply such observations as SMoS. 

6.2. Limitations   

Although some advancements can be achieved by con-
structing SMoS, there are several limitations that have not 
been fully resolved: 

, is considered extremal when either 
 or  exceeds specified thresholds; and 

• The Multistep Integration Method (Ismail et al., 
2011) generates each conflict indicator value  from 
various SMoS using their respective pre-defined map-
ping functions, . Subsequently, a representa-
tive value is derived from the set of individual map-
pings across different conflict indicators. 

• The predicted crash frequency, severity index, and 
the number of conflicts produced from all models are 
all highly correlated with the crash frequency (rang-
ing from 0.702 to 0.897) and are all statistically highly 
significant (p<0.001). 

• The ranking performances of all models with respect 
to the five candidate intersections are all highly cor-
related with the ranking results with crash frequency 
(i.e. rank correlation coefficients of 0.686, 0.830, and 
0.838, respectively for Bivariate EVT (Zheng et al., 
2019), Multistep Integration (Ismail et al., 2011), and 
the proposed EBRAC). Notably, with the DIRD, the 
correlations between crash history and predicted 
crashes with the Bivariate EVT are higher than those 
reported in the literature (from 0.159 to 0.429). Such 
improvements are likely attributable to the high qual-
ity of drone data that can circumvent some data mea-
surement noises. 

• The ranking effectiveness of the proposed EBRAC 
model, as shown in Table 4, is comparable to the re-
sults of the Multistep Integration (Ismail et al., 2011) 
and outperforms the Bivariate EVT (Zheng et al., 
2019), as evidenced by the results of Spearman’s Rank 
Correlation analysis. Certainly, both models have 
their merits for use in the approach-based assess-
ment, but the proposed EBRAC offers a new alterna-
tive that can best take advantage of quality data from 
DIRD for convenient yet effective applications. 

• Under the constraints of limited sample size, the pro-
duced measurements from the three models are 
highly correlated with the historical crash frequency 
data (0.760, 0.811, and 0.986, respectively, for Bivari-
ate EVT, Multiple Integration, and EBRAC), but only 
the proposed EBRAC shows a statistically significant 
correlation (at 0.05 level). 

• The proposed EBRAC, having the Spearman rank cor-
relation coefficient of 0.900, outperforms the other 
two benchmark models (0.700 and 0.700). The dis-
crepancy in the Spearman correlation coefficient be-
tween these three models is statistically significant. 

• In addition, the top 3 intersections of higher crash 
frequency are ranked consistently by the proposed 
EBRAC, indicating its effectiveness even for the appli-
cation of a limited sample size. 

• The calibration of the state-of-art models in the lit-
erature, due to the limited vision coverage available 
from the mounted cameras for data collection, is 
mostly focused on individual approaches, instead of 
the entire intersection; and 

• The proposed EBRAC with the precise movements of 
vehicles over the entire intersection can identify all 
conflicts within and between intersection approaches 
from the behavioral aspects, including some high-
risk maneuvers, such as head-on or angle crashes 
during the signal transition, left-turn during a per-
mitted phase, and right-turn-on-red. 

• Swerving: apart from braking, another way to nav-
igate away from danger is swerving around to avoid 
the collision course. The implicit assumption of pos-
sible maneuver is braking in applying EBRAC-related 
analysis, but steering has not yet been considered. 
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Table 4. Ranking performances under the approach-based assessment       

Background 
Bivariate EVT 

(Zheng et al., 2019) 
Multistep integration 

(Ismail et al., 2011) 
Proposed 

EBRAC with DIRD 

Intersections Approaches 
Crash frequency 
(# crashes/year) 

# crashes (year-1) Severity Index # of conflicts (hr-1) 

US301 @ Billingsley Rd 

From North 3.33 5 11.55 4 182.80 7 8 6 

From South 2.67 6 15.58 3 119.60 8 4 9.5 

From East 1.67 7 8.64 6 239.80 5 14 5 

From West 0.67 15 1.94 16 98.60 13 1 18 

US301 @ Harbour Way 

From North 3.40 4 10.46 5 315.20 3 15 4 

From South 6.00 3 16.65 2 242.80 4 22 2 

From East 0.60 16.5 1.56 17 52.80 20 4 9.5 

From West 0.20 20 2.29 15 96.20 14 2 15 

MD118 @ Wisteria Dr 

From North 1.20 8.5 2.97 13 212.00 6 7 7 

From South 0.80 13 5.98 8 109.60 12 3 12 

From East 0.40 18.5 3.67 12 66.00 18 1 18 

From West 0.40 18.5 1.32 18 79.40 16 3 12 

MD3 @ MD424 

From North 7.00 1.5 4.93 9 446.20 1 16 3 

From South 7.00 1.5 17.00 1 371.00 2 23 1 

From East 0.60 16.5 8.45 7 118.60 9 0 20 

From West 0.80 13 3.82 11 93.20 15 2 15 

MD198 @ MD650 

From North 0.80 13 0.00 19.5 55.00 19 1 18 

From South 1.00 10.5 0.00 19.5 75.20 17 2 15 

From East 1.00 10.5 2.81 14 110.80 10 3 12 

From West 1.20 8.5 4.14 10 110.00 11 5 8 

Pearson Correlation Coefficient 0.702 0.881 0.897 

P-value <0.001*** <0.001*** <0.001*** 

Spearman Rank Correlation Coefficient 0.686 0.830 0.838 

P-value <0.001*** <0.001*** <0.001*** 

Note: the italic numbers indicate the rank assessment results. One to three asterisks denote statistically significant at 0.05, 0.01, and 0.001, respectively. 

Estimating Intersections’ Near-Crash Conflicts With the Drone-Based Image-Recording Data

Traffic Safety Research 13



Table 5. Ranking performances under the intersection-based assessment       

Background 
Bivariate EVT 

(Zheng et al., 2019) 
Multistep Integration 

(Ismail et al., 2011) 
Proposed 

EBRAC with DIRD 

Intersections 

Crash 
frequency 
(# crashes/

year) 

# Crashes (year-1) Severity Index # of conflicts (hr-1) 

US301 @ Billingsley 
Road 8.30 3 40.61 1 703.0 4 44 3 

US301 @ Harbour Way 10.20 2 35.91 3 910.8 2 55 2 

MD118 @ Wisteria 
Drive 2.80 5 25.98 5 757.2 3 25 4 

MD3 @ MD424 15.40 1 37.80 2 1155.0 1 72 1 

MD198 @ MD650 4.60 4 29.86 4 406.2 5 24 5 

Pearson Correlation Coefficient 0.760 0.811 0.986 

P-value 
0.136 

n.s. 
0.096 

n.s. 0.002* 

Spearman Rank Correlation Coefficient 0.700 0.700 0.900 

P-value 
0.188 

n.s. 
0.188 

n.s. 
0.037* 

Notes: the italic numbers indicate the rank assessment results; one to three asterisks denote statistical significance at 0.05, 0.01, and 0.001, respectively, and n.s. denotes not statisti-
cally significant at a 0.05 level 

7. Conclusions   

Recognizing the random nature of the historical crash 
data and the lack of up-to-date information to reflect the 
risk of the current driving population, this study has pro-
posed an effective and convenient method along the line 
of studies, Traffic Conflict Technique (TCT), for intersection 
risk assessment. The proposed method with its safety sur-
rogate variable, Extra Brake Required to Avoid a Crash 
(EBRAC), has taken advantage of high-precision informa-
tion uniquely available from the Drone-based Image-
recording data (DIRD) to estimate the frequency of an in-
tersection’s near-crash conflicts. Such surrogate measure 
accounts for road users’ direct maneuver- the deceleration 
in response to the required brake. 

Since the resulting EBRAC over a target period with the 
extensive yet precise information from DIRD has reflected 
the collective impacts of all contributing factors (e.g. from 
driving behaviors to pavement conditions) to near-crash 

maneuvers, it is directly applicable, after proper calibra-
tion, to different intersections in the same region without 
further adjustment under different environmental condi-
tions, or relying on other sophisticated methods to inte-
grate all information reflected in different safety surro-
gates. 

The effectiveness of the proposed methodology has been 
evaluated with a case study involving five intersections and 
20 approaches. Based on the results of two widely used sta-
tistics, the DIRD can indeed produce better accuracy than 
with the data from the roadside cameras for measuring the 
safety surrogate variables adopted in the literature. The 
proposed EBRAC with the uniquely high-quality DIRD can 
also yield performance comparable to or even better than 
the two state-of-the-art methods for ranking the risk level 
with respect to individual approach or the entire intersec-
tion level. 

Future research along this line includes: (1) developing 
a severity index that can measure the crash severity em-
bedding the proposed EBRAC; (2) enhancing the proposed 
EBRAC with DIRD by taking advantage of multiple aspects 
of driving behavioral data (e.g. lateral acceleration), and (3) 
constructing a traffic control module based on the proposed 
EBRAC to proactively improve the intersection safety. Ad-
ditionally, in this study phase, the property of EBRAC has 
been investigated. Since acceleration/deceleration informa-
tion is applied, in theory it should be more informative than 
other SMoS in estimating risks. However, integrations of 
EBRAC with other SMoS have not been studied in this study 
phase and combinations of SMoS (such as Swedish TCT’s 
speed and TTC plot in Laureshyn & Várhelyi, 2018) may 
also be a research direction. 

• Steering angle:  the direction of velocity, as a vector, 
is the assumed direction of travel. However, the use 
of Ackermann geometry to indicate the direction of 
travel (RCE, 2024) in a mechanical sense has not been 
integrated with the proposed EBRAC analysis. False 
alarms may be called when turning movements are 
apparent. 

• Action of the leader:    the leader’s action is assumed 
to follow its current direction with the same speed. 
On one hand, the steering angle issue not only ap-
plies to the follower but also to the leader. On the 
other hand, acceleration and deceleration should also 
be accounted for, given the possibility of computing 
them is not subject to the quality of contemporary 
data, which has not been considered in this study. 
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Table A1. Spearman Rank Correlation Coefficient between exposure, conflict, and crash          

Spearman Rank Correlation 
Coefficient 

Exposure: recorded traffic 
volume (veh/hr) 

Conflict: # of conflicts by 
EBRAC (hr-1) 

Crash: crash 
frequency 

(# crashes/year) 

Exposure: recorded traffic 
volume (veh/hr) 

1.000 0.695 0.808 

Conflict: # of conflicts by EBRAC 
(hr-1) 

0.695 1.000 0.838 

Crash: Crash Frequency (# 
crashes/year) 

0.808 0.838 1.000 

Appendix  

To show the exposure is not the sole contributor to the 
crashes and the surrogate measures are not singly passing 
the relations to crashes, this study has further investigated 
the relations between exposure and crash as the very base-
line. 

As shown in Table A1, if the volume counts represent 
levels of exposure, its Spearman rank correlation coefficient 
with the crash frequencies is 0.808 (see the cells high-
lighted in orange), whereas, in the same dataset, the pro-
posed EBRAC is more informative, i.e. 0.838. In this study, 
Spearman rank correlation coefficient is the appropriate 
tool due to small dataset, but the conclusion can be more 
affirmative if extensive studies such as Gettman et al. 
(2008) with detailed regression models are conducted in fu-
ture studies. 
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