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Growing concerns about emissions, urban traffic congestion, and the promotion of an 
active lifestyle are inducing more people to choose bike for their daily commute. The 
increase in bike usage underscores the need for improving the cyclist’s safety. Our study 
examined the 72 363 cyclist crashes that occurred in Great Britain in the period 2016-2019 
with the objective of (1) examining how various factors influence cyclist crash severity, 
(2) identifying complex interactions among these crash patterns, and (3) proposing 
countermeasures aimed at solving the identified risk factors. To achieve these goals, a 
Classification Tree (CT) model was used as an exploratory tool to detect patterns and 
interactions that may not have been hypothesized a priori and an econometric approach, 
such as Mixed Logit Model (MLM), was used to quantify global effects and test the 
interactions identified by the CT and all the explanatory variables within a statistically 
rigorous framework. Specifically, six interaction variables were identified from the CT 
terminal nodes with the highest probability of fatal crashes by tracing back their pathways 
to the root node. These interactions were then included as additional explanatory 
variables in the MLM to guarantee that all risk factors were tested within a unified 
statistical framework. Interestingly, all the interactions were statistically significant. 
Thus, the CT model is explicitly used as a supporting tool to identify potential 
interactions, while conclusions are extracted from the MLM results. Based on the 
identified risk factors, a set of targeted safety countermeasures has been proposed to 
minimize cyclist crash severity and improve overall road safety. 

1. Introduction   

The emphasis on encouraging cycling has a great im-
portance for European cities and towns, because it consti-
tutes a key element to reach climate objectives, such as 
the EU’s ambitious target to reduce emissions by a mini-
mum of 55% by 2030 (European Union, 2021). The rising 
concerns regarding greenhouse gas emissions, urban traffic 
congestion, and the active lifestyle promotion have resulted 
in a transformation in transportation habits. Indeed, an in-
creasing number of road users choose the bikes as their 
daily commuting mode (European Commission, 2020). 

Moreover, in Great Britain, cyclist traffic increased by 
50% between 2004 and 2022 (Department for Transport, 
2023). The rise in bike usage represents a significant phe-
nomenon, that indicates an expanding environmental 
awareness and a commitment to sustainable mobility. How-
ever, despite this significant rise in bike usage, Great Britain 
reports relatively low cycling rates compared to other Eu-
ropean countries, with an average of 80 km cycled per per-
son per year between 2016 and 2018. In contrast, countries 
such as the Netherlands and Denmark have a higher rate, 
with 865 km and 508 km cycled per person per year re-

spectively (Adminaitė & Jost, 2020). This disparity high-
lights the varying levels of cycling engagement across Eu-
rope and shows the need for complete streets and more 
tailored design and maintenance projects for the creation 
of a community that promotes safety, connectivity, and at-
tractiveness through a transportation network that accom-
modates all modes (Montella et al., 2022). Indeed, the way 
the streets are designed significantly impacts the transport 
system. However, the high number of cyclists fatalities and 
serious injuries show that a significant and rigorous effort 
to improve the cyclist safety is essential to tackle the chal-
lenge of sustainable mobility. 

More than ever, the cyclist safety deserves attention and 
in-depth research, because a growing number of cities is 
promoting cycling as an economic, green, healthy, and effi-
cient way of transport. At this aim, the definition of a vul-
nerable road users (VRUs) research is beneficial to identify 
patterns that affect crash severity and to the development 
of safety countermeasures to reduce fatalities and serious 
injuries involving VRUs. This study aims at contributing to 
the research focused on cyclist safety improvement. Indeed, 
the use of crash data analysis is necessary for a deeper un-
derstanding of the factors associated to cyclist crashes by 
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supporting the implementation of more effective counter-
measures (Scarano, Aria, et al., 2023; Scarano, Rella Ric-
cardi, et al., 2023). 

The objectives of the research include (1) examining how 
various factors, such as road-related features, environmen-
tal conditions, involved vehicle characteristics, driver at-
tributes, and cyclist-related aspects, influence cyclist crash 
severity, (2) identifying complex interactions among these 
crash patterns and refining the regression analysis, and (3) 
offering useful insights that can support the development 
of effective countermeasures linked to the identified risk 
factors. 

To achieve these objectives, this study employs both a 
machine learning tool, the Classification Tree (CT) and an 
econometric model, the Mixed Logit Model (MLM). The CT 
model serves as an exploratory tool, detecting patterns and 
potential interactions that may not have been hypothe-
sized a priori. These insights are then used to refine the 
MLM, ensuring that all relevant variables and interactions 
are tested within a unified statistical framework. This ap-
proach guarantees that conclusions are based on a rigorous 
and statistically consistent methodology. 

These associations were examined using crash data re-
ferred to the 72,363 cyclist crashes that were recorded in 
Great Britain in the period 2016-2018. This integrative ap-
proach, combining econometric and machine learning 
methodologies, is relatively uncommon in existing litera-
ture. 

2. Literature review    

In the field of cyclist safety research, understanding the 
factors affecting the crash severity is important. In recent 
years, several studies have explored this critical area, aim-
ing to uncover contributors to the crashes involving cyclist 
outcome. Despite the wide research conducted in this field, 
the issue resolution has not been reached. Consequently, 
there is a need for more investigations to understand the 
factors contributing to the cyclist crash severity and our 
study aims to further investigate these factors by combin-
ing two different methodologies: the CT and the MLM. The 
CT helps in identifying critical scenarios by tracing the de-
cision paths within the model. On the other hand, the MLM 
is particularly advantageous because it allows us to ac-
count for unobserved heterogeneity, providing quantitative 
and easily interpretable results on each factor impact. This 
combination of models is relatively uncommon in existing 
research, and it enables not only to identify the key factors 
influencing crash severity but also to pinpoint critical asso-
ciations that can help inform targeted safety measures. 

Table 1 provides a concise summary of insights derived 
from prior studies on cyclist injury severity, employing var-
ious methodologies from traditional econometric models to 
advanced machine learning techniques. 

2.1. Factors influencing cyclist crash severity       

Several studies in the last decade have emphasized the 
association of higher speed limits with the most severe out-
comes occurrence (Behnood & Mannering, 2017; Chen & 

Shen, 2016; Dash et al., 2022; S. Islam & Hossain, 2015; S. 
Liu et al., 2021; Zhu, 2021). 

The crash severity is significantly influenced by roadway 
factors, including the area in which the crash occurs, road 
and pavement characteristics, the number of lanes, and the 
presence of road signage (Anysz et al., 2021; Das et al., 
2023; Dash et al., 2022; Katanalp & Eren, 2020; Prati et al., 
2017; Sener et al., 2019; Zhu, 2021). This reinforces the im-
portance that roadway plays in determining cyclist safety. 

Environmental factors are also important as the analysis 
indicates that the most severe cyclist crashes are more 
likely to occur during the summer season, at night, or in 
low-illumination conditions (Chen & Shen, 2016; Das et al., 
2023; Dash et al., 2022; S. Islam & Hossain, 2015; Salon & 
Mcintyre, 2018; Sun et al., 2022b). 

Similarly, individual cyclist characteristics including age, 
gender, and race have been identified as factors associated 
to an increase in crash severity (Bahrololoom et al., 2020; 
Balakrishnan et al., 2019; Behnood & Mannering, 2017; 
Chen & Shen, 2016; Joo et al., 2017; J. Liu et al., 2020; Ma-
cioszek & Granà, 2022; Prati et al., 2017; Sun et al., 2022a; 
Zhu, 2021). Among cyclists behaviours, alcohol consump-
tion, riding on the wrong side of the road, and helmet and 
reflective clothing usage significantly influence the crash 
severity (S. Islam & Hossain, 2015; S. Liu et al., 2021; Wahi 
et al., 2018). 

In motor-vehicle crashes involving cyclists, various fac-
tors associated both with the driver as well as the vehicle 
affect the injury severity. Prior studies identified a signifi-
cant influence of drivers gender, age, alcohol consumption, 
distraction, and driving on the wrong side of the road on 
the cyclist crash outcome (Balakrishnan et al., 2019; Das et 
al., 2023; Liu and Fan, 2021; Rahimi et al., 2020). 

Moreover, the involvement of heavy vehicles and the ex-
tent of damage sustained by the vehicles contribute to the 
likelihood of severe injuries in cyclist crashes. Recognizing 
this dual aspect highlights the need to consider not only 
factors specific to cyclists but also the vehicles characteris-
tics (Joo et al., 2017; Katanalp & Eren, 2020). 

Several studies focused on crashes occurring at intersec-
tions, revealing noteworthy insights. Akgun et al. (2018) 
found that a higher speed limit reduces safety for cyclists 
at roundabouts, with the probability of a serious casualty 
increasing for each additional lane on approach and with a 
higher entry path radius. Shen et al. (2020) extended this 
exploration to various intersection types, including round-
abouts, crossroads, and T-junctions, highlighting differ-
ences in factors influencing cycling safety across these in-
tersections. Another perspective was offered by Wahi et al. 
(2018) who identified factors contributing to bike-motor 
vehicle crash severity under different traffic control mea-
sures at intersections. Their findings indicated increased 
injuries for cyclists aged 40-49 and 60+ without helmets, 
particularly at regulated intersections. Especially, faulty cy-
clists experienced more severe injuries at stop signs, with 
speed emerging as an important risk factor specifically at 
these intersections. Bahrololoom et al. (2020) focused on 
bike-car crashes at intersections, showing that pre-colli-
sion car kinetic energy and post-collision bike kinetic en-
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ergy affect injury severity. The study further highlighted 
that older cyclists are more susceptible to severe crashes, 
while the use of helmets serves as a mitigating factor in in-
jury severity. 

2.2. Methodologies employed in previous studies       

The literature analysis indicates different methodology 
families employed in previous studies (Table 1). Among 
them, econometric models have a solid foundation for crash 
analysis. They can be classified into ordinal and non-ordi-
nal methods. The ordinal models, such as Ordered Logit (S. 
Liu et al., 2021), Ordered Mixed Logit (Balakrishnan et al., 
2019; Chen & Shen, 2016), Ordered Probit (Joo et al., 2017; 
S. Liu et al., 2021), Geographically Weighted Ordinal Logit 
(J. Liu et al., 2020) and Generalized Ordered Logit (Chen & 
Shen, 2016; Shen et al., 2020) have been used to analyse the 
crash severity in a graduated manner, considering increas-
ing levels of injuries. 

On the other hand, non-ordinal models included the 
Generalized Additive Model (Chen and Shen., 2016), the 
generalized linear model (Xing et al., 2020), the Logit 
Model (Akgun et al., 2018; Dash et al., 2022; Macioszek & 
Granà, 2022; Salon & Mcintyre, 2018; Sener et al., 2019), 
the Mixed Logit (Bahrololoom et al., 2020; Behnood & 
Mannering, 2017; Das et al., 2023; S. Islam & Hossain, 
2015; Sun et al., 2022b, 2022a; Wahi et al., 2018), the Par-
tial Proportional Odds Logit (S. Liu et al., 2021; Shen et al., 
2020), and the Latent Class Analysis (Sun et al., 2022a). 

Furthermore, the literature analysis indicates a growing 
use of machine learning techniques such as Association 
Rules (Anysz et al., 2021), Decision Trees (Dash et al., 2022; 
Joo et al., 2017; Katanalp & Eren, 2020; Prati et al., 2017; 
Rahimi et al., 2020; Xing et al., 2020), DT-Based Converted 
Fuzzy Logic (Katanalp & Eren, 2020), Random Forest (Dash 
et al., 2022; Rahimi et al., 2020), Gradient Boosting (Zhu, 
2021) and Bayesian Network (Prati et al., 2017; Sun et al., 
2022b). 

The machine learning methods are characterised by their 
ability to handle complex and nonlinear relationships in 
data without specific assumptions about data distribution. 
Thus, in presence of large and complex datasets, machine 
learning technique may be preferred to econometric mod-
els, needing short data preparation time, and providing 
enough accuracy (F. Mannering et al., 2020; Montella et al., 
2021; Moral-Garcia et al., 2019; Rella Riccardi, Galante, et 
al., 2022; Zhu, 2021). 

Thus, while econometric models provide a solid analyt-
ical framework, machine learning methods offer the more 
flexibility to address complex relationships and dataset. 

In this paper, both econometric methods, such as the 
Mixed Logit Model (MLM), and machine learning tools, 
specifically the Classification Tree (CT), were employed to 
identify the factors influencing the cyclist crash severity. 

Among econometric models, the MLM was chosen be-
cause it accounts for unobserved heterogeneity among ob-
servations, providing a full understanding of variability in 
the data. This is particularly useful in the context of cyclist 
crashes, where individual characteristics may affect out-
comes (Rella Riccardi, Mauriello, Sarkar, et al., 2022; 

Scarano et al., 2022b). Moreover, our study introduces an 
innovative approach that combines both traditional econo-
metric methods and machine learning techniques. While 
traditional econometric models provide a solid foundation 
in statistics and econometrics field, our research makes a 
step forward by also using advanced machine learning tools 
such as the CT. This integration represents a conventional 
practice that overtakes the singular method limitations. 

Finally, our study is in line with the contemporary trend 
in the literature, showing a growing trust on machine 
learning techniques. The inclusion of decision trees as data 
mining tools, as showed in a recent analysis carried out by 
Scarano et al. (2023), represents a progress in our research. 
Indeed, CT emerge as a practical technique able to effec-
tively manage discrete variables or variables with a high 
number of categories. This approach not only demonstrates 
ability in handling outliers but also eliminates the need for 
a priori assumptions regarding variable distributions, over-
coming the regression model limitations (Prati et al., 2017). 

3. Data   

Crash data were retrieved from the STATS19 dataset 
(https://www.gov.uk/transport-statistics-notes-and-guid-
ance-road-accident-and-safety). This dataset includes 
records of road crashes resulting in personal injuries, in-
volving at least one vehicle, that occurred on public roads 
in Great Britain. Notably, the dataset does not include in-
formation about Property Damage Only (PDO) crashes. 
These data were collected by law enforcement at the crash 
scene or reported by the public at a police station. For the 
purposes of this study, we carried out an analysis of crashes 
that occurred in the Great Britain during the three-year pe-
riod from 2016 to 2019. 

Initially, the dataset was presented in three separate 
subsets, containing information on the crashes, the in-
volved vehicles, and the casualties, respectively. The crash 
dataset consisted of thirty-two variables to describe the 
crash, the vehicle dataset included twenty-two variables 
describing all the vehicles involved, and the casualty 
dataset contained sixteen variables characterising the road 
users injured or killed in the crashes. To work with a unified 
dataset, we merged these three subsets using the unique 
crash index for each crash. 

In order to improve the performance of our statistical 
tools, an initial data preprocessing was conducted by join-
ing specific categories and reorganizing redundant infor-
mation. Regarding the vehicles involved in the crash, the 
analysis focus on the bikes and a second vehicle, because 
a very small percentage of cyclist-related crashes involved 
more than two vehicles. 

The final dataset includes a total of 72,363 cyclist-re-
lated crashes. This dataset was reorganized into forty ex-
planatory variables as shown in the Appendix A, Tables 
A1-A4. The variables were divided into roadway (Table A1), 
environmental (Table A2), vehicle (Tables A2 and A3), cy-
clist, and driver-related variables (Table A4). The crash 
severity, which represents the response variable, was based 
on the injury severity of the most seriously injured person 
involved in the crash. It was classified into three categories: 
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Table 1. Literature review (Part A)     

References Method Objective Main findings 

Akgun et al., 
2018 

Logit To investigate which design 
factors, influence cyclist 
severity at give way (non-
signalized) roundabouts with 
mixed traffic 

A higher speed limit reduces the safety for cyclists at 
roundabouts. The probability of a serious casualty 
increases five times for each additional number of lanes 
on approach and by 4% with a higher entry path radius. 

Anysz et al., 
2021 

Association 
Rules 

To identify factors and 
conditions contributing to 
cyclists’ serious crashes 

Daylight reduces traffic signal impact on slight injuries in 
urban areas, with no significant rules for fatal and severe 
injuries. In non-urban areas, the absence of daylight and 
dual roadway results in fatal and severe injuries 

Bahrololoom 
et al., 2020 

Newtonian 
Mechanics; 
Mixed Logit 

To investigate the relationship 
of cyclist’s injury severity with 
various parameters in bike-car 
crashes at intersections 

Pre-collision car kinetic energy and post-collision bike 
kinetic energy impact injury severity. Older cyclists 
suffer more severe crashes, helmet usage reduced injury 
severity. 

Balakrishnan 
et al., 2019 

Ordered 
Mixed Logit 

To identify the socioeconomic 
characteristics influencing 
injury severity heavy trucks 
-VRUs crashes 

Injury severities are affected by the age and gender of 
road users and sociodemographic factors such as age, 
language, occupation, religion, and income 

Behnood & 
Mannering, 
2017 

Mixed Logit To investigate factors that 
contribute to the cyclist injury 
severity in bike-MV crashes 
while systematically 
accounting for unobserved 
heterogeneity within the crash 
data 

Injury severities are affected by cyclist and driver race 
and gender, alcohol impairment in cyclists or drivers, the 
age of cyclists, riding or driving on the wrong side of the 
road, drivers’ unsafe speeding, and the absence of a 
cyclist helmet 

Chen & 
Shen, 2016 

Generalized 
Ordered 

Logit; 
Generalized 

Additive 

To estimate the effects of built 
environment factors on cyclist 
injury severity in MV- bike 
crashes, and to accommodate 
possible spatial dependence 
among crash locations. 

Higher employment density correlates with lower injury 
severity. Land use mixture reduces severe injuries or 
fatalities. Reflective clothing and improved street 
lighting decrease cyclist injuries, while higher speed 
limits, older age, and involvement of trucks increase the 
risk of severe crashes 

Das et al., 
2023 

Mixed Logit To examine the key 
contributing factors 
influencing cyclist injuries 

Distracted drivers, elderly cyclists, and riding in dark 
conditions increase the likelihood of severe injuries in 
MV-cyclist crashes. Conversely, straight level roadways 
and city streets decrease the odds of severe injuries 

Dash et al., 
2022 

Logit; 
Decision 

Tree; 
Random 

Forest 

To understand the critical 
factors that influence severe 
cyclist crash and identify 
countermeasures 

Inadequate lighting conditions, crashes on roadways, 
speed limits, average annual daily traffic, number of 
lanes, and weekends are the factor affecting cyclist 
crashes 

S. Islam & 
Hossain, 
2015 

Mixed Logit To compare the influence of 
various variables on injury 
severities in pedestrian-MV 
and bike-MV crashes 

Injury severities are affected by use of retroreflective 
clothing, older age, dark roadway, and low speed 
roadway. Time of day and weather, resulted random 
parameters 

Joo et al., 
2017 

Decision 
Tree; 

Ordered 
Probit 

To examine the impacts of 
contributing factors on the 
cyclist injury severity 

Factors affecting injury severity were the cyclist age and 
the presence of trucks 

Katanalp & 
Eren, 2020. 

C4.5 
Decision 
Tree; DT-

Based 
Converted 

Fuzzy Logic; 

To examine the effect of 
several parameters on cyclist 
injury severity and validate the 
new fuzzy decision approaches 
for the classification of cyclist 
injury severity 

The most important factors in bike-MV crash severity 
are gender, vehicle damage extent, road type, pavement 
type, crash type, and MV manoeuvres 

S. Liu et al., 
2021 

Ordered 
Logit; 

Partial 
Proportional 

Odds Logit 

To Investigate factors 
influencing injury severity in 
bike crashes on weekdays and 
weekends 

Factors like older aged cyclists, riding direction, pickup, 
older aged drivers, male drivers, and specific time 
periods are significant only on weekdays. Speed limits, 
time of day, alcohol usage, and specific road 
characteristics affect injury severities only on weekends. 

Abbreviations: VRUs= Vulnerable Road uses; MV = motor-vehicle 

slight injury, serious injury, and fatal. A fatal crash was de-
fined as a crash in which at least one person was killed in-
stantly or within 30 days from the crash. A serious injury 
crash was referred to crashes resulting in injuries that re-

quired hospitalization or involved fractures, concussion, 
internal injuries, burns (excluding friction burns), severe 
cuts, severe general shock requiring medical treatment, or 
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Table 1. Literature review (Part B)     

References Method Objective Main Findings 

J. Liu et al., 
2020 

Geographically 
Weighted 

Ordinal Logit 

To generate new 
knowledge about 
bike safety using 
spatial modelling 

Cyclist injury severity increases with older cyclists, cyclist intoxication, 
and higher MV speeds 

Macioszek 
& Granà, 
2022. 

Logit To identify factors 
that influence the 
occurrence and 
severity of cyclist 
injury in cyclist-MV 
crashes 

Factors affecting cyclist injuries and deaths include driver attributes 
(gender, age, alcohol, speeding), cyclist attributes (age, alcohol, speed), 
and crash details (vehicle type, crash location, time, type) 

Prati et al., 
2017 

CHAID 
Decision Tree; 

Bayesian 
Network 

To investigate the 
factors predicting 
the severity of bike 
crashes 

The key predictors were road type, crash type, cyclist’s age, road signage, 
cyclist’s gender, type of opponent vehicle, month, road segment type, and 
opponent vehicle type 

Rahimi et 
al., 2020 

Random 
Forests; 

Decision Trees 

To recognize fatality 
patterns in large 
truck-involved 
pedestrian/bike 
crashes 

On local roads (AADT > 38,000), intersections and vehicle speeding are 
crucial for injury severity. On High-volume roads (non-local), young/
middle-aged truck drivers, divided roadways, speeding, and midday 
increase fatal outcomes. On low-volume roads, clear weather, median 
barrier, and curb shoulder near a signalized intersection affected fatal 
crashes 

Wahi et al., 
2018 

Separate 
Mixed Logit 

To identify factors 
that contribute to 
bike-MV crash 
severity under 
different traffic 
control measures at 
intersections 

Injuries increase for cyclists aged 40-49 and 60+ without helmets, 
particularly at regulated intersections. Faulty cyclists experience more 
severe injuries at stop signs, with speed being a risk factor specifically at 
stop signs 

Salon & 
Mcintyre, 
2018 

Bivariate 
Analysis; Logit 

To illuminate key 
determinants of 
crash severity for 
both pedestrian and 
cyclist 

State highway crashes, late-night hours, and daylight contribute to crash 
severity. Summer increases serious outcomes for faulty cyclist crashes. 
Cyclist characteristics such as race, sobriety, age over 64 affect crash 
severity 

Sener et 
al., 2019 

Logit To identify factors 
associated with crash 
frequency and 
severity for 
pedestrians and 
cyclists 

Crash frequency and severity are affected by travel demand, commute 
behaviours, network characteristics, and sociodemographic features 

Shen et al., 
2020 

Generalized 
Ordered Logit; 

Partial 
Proportional 

Odds 

To explore the 
contributing factors 
to cyclist injury 
severity on 
roundabouts, 
crossroads, and T-
junctions 

The factors that affect cycling safety at various intersections show 
enormous differences 

Sun et al., 
2022b 

Mixed Logit; 
Bayesian 
Network 

To analyse VRUs-MV 
crashes across 
seasons using a 
hybrid method to 
identify significant 
factors and their 
interactions. 

Certain factors increase fatality likelihood when combined, like functional 
zone in spring and summer and MV type in fall and winter. 

Sun et al., 
2022a 

Latent Class 
Analysis; 

Mixed Logit 

To identify 
contributing factors 
to cyclist crashes in 
cold regions 

Male cyclists have a higher winter fatality risk. 

Xing et al., 
2020 

Generalized 
Linear Model; 
Classification 

Tree 

To identify the 
influence factors on 
injury severity of 
electric and non-
electric bike crashes 

The factors influencing non-electric bike crashes are signal control mode, 
MV type, visibility, lighting condition, motor vehicle license possession, 
and the type of MV. 

Zhu, s., 
2021. 

Gradient 
Boosting 

To investigate the 
contributing factors 
to fatalities and 
injuries involving 
cyclist 

Key predictors are gender, arterial road type, 100 km/h speed zone, young 
drivers, dark conditions, crash type, and cyclists age. 

Abbreviations: VRUs= Vulnerable Road uses; MV = motor-vehicle 
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injuries causing death 30 or more days after the crash. Fi-
nally, slight injuries were referred to minor injuries. 

The database used in this research comprised 429 fatal 
crashes (0.59% of all crashes), 14,890 serious injury crashes 
(20.58% of all crashes), and 57,044 slight injury crashes 
(78.83% of all crashes). 

4. Method   

To ensure a complete understanding of the factors in-
fluencing cyclist crash severity, this study adopts an inte-
grative methodological approach that combines economet-
ric modelling with machine learning techniques. The CT 
model is leveraged as a preliminary exploratory tool to un-
cover complex interactions and high-risk crash scenarios. 
The insights derived from the CT analysis are then system-
atically incorporated into the MLM, allowing for a statisti-
cally rigorous evaluation of both main effects and interac-
tion terms. 

4.1. Classification tree    

Classification trees represent a methodology aimed at 
obtaining a hierarchical segmentation of the cyclist crashes 
by iteratively partitioning the dataset into subgroups that 
are homogeneous in terms of cyclist crash severity. This 
process shows the variables that have the stronger influ-
ence on the outcome. 

The tree is a directed graph that starts from a root node. 
Then, this root node is progressively split into leaf nodes by 
using an explanatory variable named “splitter”. Although 
all independent variables are considered potential candi-
dates for splits at each internal node, the predictor that 
makes the best partition is selected. 

We implemented the Classification and Regression Trees 
(CART) algorithm introduced by Breiman et al. (1984). The 
evaluation of impurity at each node was performed using 
the Gini reduction criterion. A higher Gini index value indi-
cates increased homogeneity in the node resulting from the 
split. The Gini reduction criterion is calculated as follows: 

where  represents the proportion of observations in 
node ( ) belonging to the jth class of the response variable. 
A node is pure when contains all observations belonging 
to a single severity class, resulting in an impurity value of 
zero. 

The total impurity of the tree (T) is calculated as follows: 

where  represents the impurity of the node , 
 is the node’s weight (  is the count of obser-

vations in node ( ),  is the overall count of observations), 
and  denotes the all the terminal nodes in the tree. The 
terminal nodes exhibit lower impurity levels in contrast to 
the root node. The overall impurity of the tree decreases 
through the identification, at each tree node, of the optimal 
partitioning of observations into distinct severity classes, 
ensuring external heterogeneity and internal homogeneity. 

The CART algorithm comprises the following steps: 

The algorithm is applied to each node until the tree con-
struction stops. Before choosing the most appropriate stop-
ping criterion for the tree, a literature review was carried 
out (Table 2). 

Based on the information presented in Table 2, it was de-
cided to adopt stopping techniques according to two crite-
ria: (1) when the decrease in Gini index fell below a mini-
mum threshold set at 0.0001; and (2) when the tree reached 
a maximum depth of 4 levels. 

For each node, the assigned severity class depends on 
the PCR highest value. This PCR compares the percentage 
of observations for each severity class in the terminal node 
with those in the root node (Rella Riccardi, Galante, et al., 
2022): 

where  denotes the crashes in node  belonging to 
severity class ,  is the tree root node. 

For each node, the class  with the highest PCR value 
determines the class of that node, selected as follows: 

The terminal nodes allow us to identify relationships be-
tween variables that affect the severity of cyclist crashes. 
The classification trees were carried out using the SPSS 
software. 

4.2. Mixed logit    

The MLM represents a generalized version of multino-
mial logistic regression (Rella Riccardi, Mauriello, Scarano, 
et al., 2022). Unlike the standard logit model, the MLM al-
lows coefficients of the variables βj to vary across obser-
vations or groups of observations. Thus, the βj coefficients 
can be decomposed into their means ( ) and standard devi-
ations  (F. L. Mannering et al., 2016): 

In the contest in which the MLM is applied to predict crash 
injury severity, the propensity of crash i (where i = 1,…, 
72,363) towards the severity category j (where j varies from 
1 to 3: 1 = slight injury, 2 = serious injury, 3 = fatal) is ex-
pressed through the injury-severity function Sij, which is 
determined by the sum of Vij (the systematic component) 
and εij (the unobservable stochastic error): 

where  is a column vector of characteristics (explanatory 
variables) that influence the cyclist injury severity level j, 
is a column vector of the parameters to be estimated for the 
crash severity category j, and  is the error term assumed 
to be independently and identically distributed (McFadden 
& Train, 2000; Washington et al., 2020). 

1. generate the set S of all possible partitions obtained 
from the predictor set X; 

2. for each split s in the set S, calculate the impurity re-
duction; 

3. determine the best partition associated with the max-
imum impurity reduction. 
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Table 2. Literature analysis for classification tree stopping criteria        

References Levels* Stopping criterion 

Abellán et al., 2013 4 Sensitivity analysis: entropy decrease 

Chang & Wang, 2006 5 Sensitivity analysis: confusion matrix 

Iragavarapu et al., 2015 4 Minimum impurity decreases (improvement = 0.0001) 

Kashani & Mohaymany, 2011 4 Minimum evaluation error 

Kozłowski et al., 2021 4 Minimum cardinality of node subject to dividing; minimum cardinality 
of the node resulting from dividing; maximum number of tree levels 

Kwon et al., 2015 3 Missing** 

López et al., 2014 4 Maximum tree depth set at 4 levels 

Mohanty et al., 2022 3 Minimum evaluation error 

Montella et al., 2011, 2012, 2020 3,4 Minimum impurity decreases (improvement = 0.001) or maximum tree 
depth set at 4 levels 

Pande et al., 2010 Missing** Minimum impurity decreases; Limit for the minimum number of 
observations in a leaf 

Rella Riccardi, Galante, et al., 2022; 
Rella Riccardi, Mauriello, Sarkar, et al., 
2022 

4 Minimum impurity decreases (improvement = 0.001) or maximum tree 
depth set at 4 levels 

Rezapour et al., 2019 20 Minimum cross-validated error; at least two observations in each leaf 

* Levels: the different subdivisions or partitions of the data during the tree-building process. 
**Missing: missing information 

The mixed logit probability represents a weighted aver-
age of the standard logit probabilities at different values of 
parameter β. Thus, the mixed logit probability is the inte-
gral of standard logit probabilities over a density of para-
meters β, defines as follows (Alogaili & Mannering, 2020; 
Train, 2009): 

where: f(β|σ) is the continuous density function adopted by 
vector , σ is a vector of parameters that specify the den-
sity function (mean and variance), and all other terms are 
as previously defined (Anastasopoulos & Mannering, 2011). 
Note that in the simplified case where f(β|σ) = 1, the model 
reduces to the standard logit (Washington et al., 2020) 

A normal distribution is chosen for f(β| ) due to its 
proven suitability over other distributions studies (Azimi 
and Asgari, 2023; M. Islam et al., 2022; Uddin & Huynh, 
2020). 

To determine which variables should be treated as ran-
dom parameters, we employed a forward stepwise selection 
procedure based on the improvement of model fit, as mea-
sured by the Akaike Information Criterion (AIC) which bal-
ances model complexity and goodness of fit (Burnham & 
Anderson, 2004). Specifically, we initially estimated a base 
model with only fixed effects and sequentially introduced 
random effects for different variables, retaining only those 
that improved model performance in terms of AIC values. 
Furthermore, since categorical variables were transformed 
into dummy variables, only specific categories were tested 
as random rather than the entire variable. 

The βj coefficients explain the effect of the independent 
variables. For a proper interpretation of the model results, 
it is important to assess the magnitude of the impact of 
the independent variables on the dependent variable. In 
evaluating the explanatory variable influence on the crash 

severity, various methodological approaches are available, 
including odds ratio, marginal effect, or elasticity (Lord et 
al., 2021). Among these, Odds Ratio (OR) stands out as the 
most practical choice (Norton & Dowd, 2018). The OR is the 
exponentiation of βj (exp(βj)), showing the proportional in-
crease (OR > 1) or decrease (OR < 1) in the likelihood of 
the outcome when the corresponding indicator variable is 
set to 1 (Lord et al., 2021). Thus, the OR provides a com-
plete understanding of the impact of each variable on the 
outcome, representing a vigorous and convenient tool for 
analysing the complexities of factors influencing the cyclist 
crash severity. 

The MLM was executed in the R-CRAN software environ-
ment by using the “mlogit” package. 

As part of the preliminary analysis, a chi-square test was 
conducted to identify any significant relationships between 
our categorical variables. Using a significance level of 10%, 
the test results show there is not any statistically signifi-
cant relationship between the variables. 

4.3. Performance metrics    

In the cyclist crash severity analysis, the model perfor-
mance assessment is important to guarantee a complete 
understanding of the factors associated with cyclist crash 
severity. 

For the MLM, the McFadden’s Pseudo R2 was employed: 

where: LL0 is the loglikelihood of the null model and LLfull 
is the loglikelihood of the model including all the statisti-
cally significant variables. 

The McFadden’s Pseudo R2 metric works as a goodness 
of fit indicator in discrete choice models. Specifically, it 
shows how much variance the full model that incorporate 
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independent variables explains in the data compared to 
what would be explained using the null model. The McFad-
den’s Pseudo R2 variability range is between 0 and 1 with 
the higher values indicating better model performance. Mc-
Fadden’s Pseudo R2 greater than 0.20 indicates a very good 
fit (Andreß et al., 2013). 

For both the MLM and the CT tool, our focus extends 
to the G mean and F measures as performance indicators. 
They are composite indicators that integrate more individ-
ual metrics into a unified performance measure (Guo et al., 
2008). 

The G-mean (Eq. 9) shows how well the model can cor-
rectly identify both positive and negative instances: 

where: 
 is the true negative rate; TN is the num-

ber of true negatives; FP is the number of false positives; 
 is the true positive rate; TP is the num-

ber of true positives; FN is the number of false negatives. 
The F-measure (Eq. 11) balances precision and recall, 

providing an assessment of the model performance in terms 
of true cases classification. Thus, a higher F-measure value 
reflects a better trade-off between precision and recall. 

where: 
 is the accuracy of positive predic-

tions among the instances predicted as positive; 
 is the model capacity to iden-

tify all actual positive instances; 
 is a coefficient to adjust the relative importance of pre-

cision versus recall. 
 was set 1 indicating an equal emphasis on both preci-

sion and recall (Bekkar et al., 2013). 

5. Results   

5.1. Classification tree    

The CT is composed by 13 terminal nodes (Figure 1). 
Among these terminal nodes, 7 are associated with fatal 
crashes, 4 with serious injuries, and the other 2 with slight 
injuries. 

The CT starts from a first splits based on the speed limit. 
Furthermore, the following splits are based on nine specific 
variables, including the manoeuvre of the second vehicle, 
vehicle 2 type, driver age, junction type and details, the first 
road class, and the first point of impact of the second vehi-
cle, the cyclist age, and whether the second vehicle hit an 
object in the carriageway. 

The PCR was calculated for all terminal nodes to eval-
uate how well each node predicts a crash severity class 
(Table 3). The nodes 15, 17 and 21 demonstrates higher 
PCRs (10.62, 8.97, and 7.71, respectively), by highlighting 
their effectiveness in fatal crash prediction. 

The Node 15 has a PCR of 10.62. It highlights a scenario 
that includes situations where the speed limit exceeds 50 
mph, the second vehicle is overtaking or proceeding 
straight, the crash occurs outside an intersection or at 

crossroads, and the second vehicle’s first point of impact is 
the front of the bike. This combination of factors creates a 
dangerous situation that increase the fatal crash likelihood. 

Node 17, which has a PCR of 8.97, starts from a split 
based on speed limit between 20 and 30 mph. At these 
speed limits, fatal crashes are associated with specific con-
ditions such as the truck involvement, the driver of the sec-
ond vehicle aged between 25 and 74 years, and the first road 
class equal to A or a motorway. These conditions together 
create a hazardous scenario where even moderate speeds 
can result in fatal cyclist crashes. 

Node 21 has a PCR of 7.71 and represents another dan-
gerous scenario including a speed limit split of 30 mph, the 
involvement of a car or a two-wheeler (e.g., bike or PTW) 
proceeding ahead or overtaking and colliding with a curb. 
Furthermore, the collision with the curb increases the pro-
portion of fatal crashes from 0.003 (node 13) to 0.046 (node 
21). 

Regarding variable importance, the Figure 2 highlights 
variables with normalized importance above 20%. Six of 
these variables have normalized importance greater than 
50%, indicating they are significant in classifying crash 
severity: 

Results of the CT analysis were used as input for the 
MLM. Specifically, we identified the first two terminal 
nodes with the highest PCR for fatal crashes, such as the 
node 15 and the node 17, and traced their pathways back to 
the root node, showing the following interactions: 

• speed limit is recognized as the most important vari-
able. It provides insights about the maximum speed 
allowed on the road where the crash occurred, 

• area contributes to understand whether the cyclist 
crash occurred in an urban or rural setting, 

• vehicle 2 type classifies the type of the second vehicle 
that collides with the bike, 

• vehicle 2 manoeuvre explains the manoeuvres per-
formed by the second vehicle during the crash, in-
cluding going ahead, moving off, overtaking, turning 
left, turning right, U-turns, and reversing, 

• vehicle 2 engine capacity denotes the engine capac-
ities for the second vehicle involved in the cyclist 
crash, and 

• bike leaving carriageway indicates whether the bike 
remained on the carriageway, moved towards the 
nearside, or moved towards the offside during the 
crash. 

• Inter 1-4: Interaction between Speed Limit = 40; ≥50 
mph and Vehicle 2 manoeuvre = going ahead, over-
taking; 

• Inter 4-9: Interaction between Vehicle 2 manoeuvre = 
going ahead, overtaking and Junction detail = not at 
junction, crossroads, other junctions; 

• Inter 9-15: Interaction between Junction detail = not 
at junction, crossroads, other junctions and Vehicle 2 
first point of impact = front; 

• Inter 2-5: Interaction between Speed Limit = 30; 20 
mph and Vehicle 2 type = truck, other; 

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 8



Figure 1. Classification tree   
Abbreviations: GA=Going ahead; MO=Moving off; Ove=Overtaking; TL/R/U/Re=Turning left/right/U/Reversing; Ot=Other; Missing=Mis; na= not admissible; NJ =Not at junction; Cro= 
Crossroads; OJ=Other junctions; Rou=Roundabout; NI=No impact; Nea/Off=Nearside/Offside 

Table 3. PCR for terminal nodes     

Terminal node PCR Actual Predicted Class 

Fatal Serious Slight 

7 5.15 1.89 0.74 Fatal 

8 0.21 1.27 0.93 Serious 

10 0.33 1.06 0.99 Serious 

15 10.62 1.96 0.68 Fatal 

16 2.46 1.42 0.88 Fatal 

17 8.97 1.12 0.91 Fatal 

18 2.37 1.34 0.90 Fatal 

19 2.47 1.53 0.85 Fatal 

20 0.50 1.30 0.93 Serious 

21 7.71 1.08 0.93 Fatal 

22 0.54 0.95 1.02 Slight 

23 0.54 1.19 0.95 Serious 

24 0.04 0.75 1.07 Slight 

The performance metrics, expressed through F-measure 
and G-mean, provide an understanding of our model’s pre-
dictive capabilities (Table 4). 

For fatal crashes, the G-mean index demonstrates a no-
tably high value of 0.78, indicating the model’s ability to 
accurately identify both positive and negative instances and 

• Inter 5-11: Interaction between Vehicle 2 type = 
truck, other and Driver 2 age = 25-34; 35-44; 45-54; 
55-64; 65-74; 

• Inter 11-17: Interaction between Driver 2 age = 
25-34; 35-44; 45-54; 55-64; 65-74 and First road class 
= A, motorway. 
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Figure 2. Normalized importance of the variables (%)       

Table 4. CT performance metrics    

Severity level F-measure G-mean 

Fatal 0.06 0.78 

Serious injury 0.20 0.38 

Slight injury 0.79 0.42 

providing a balanced prediction. However, the F-measure, 
which balances precision and recall, yields a lower value 
of 0.06, suggesting a challenge in effectively managing this 
severity level. 

In the case of serious injury crashes, there is a significant 
improvement in the F-measure, with a value of 0.20, high-
lighting a better balance between precision and recall. Con-
versely, the G-mean index for this category is lower, with a 
value of 0.38, indicating a diminished capacity of the model 
to recognize both positive and negative instances in a bal-
anced manner. 

5.2. Mixed logit    

The findings for both the fixed and random variables are 
presented in Table 5 where, for each significant variable (p-
value <0.05), we reported the estimated value (βj) and its 
OR. 

To refine the regression analysis and explore potential 
interaction effects, we incorporated the interactions de-
rived from the CT analysis as dummy variables: interaction 

1-4, interaction 4-9, interaction 9-15, interaction 2-5, in-
teraction 5-11, interaction 11-17. 

In estimating fatal crashes, 21 explanatory variables and 
45 indicator variables emerged as statistically significant 
in addiction to 6 interaction variables. Conversely, for es-
timating serious outcome, 17 explanatory variables, 30 in-
dicator variables and 5 interaction variables demonstrated 
statistical significance. 

For fixed parameters, for each severity category, positive 
β coefficients indicate an increase in odds and negative β 
coefficients indicate a decrease in odds, relative to the ref-
erence category. 

Understanding the random variable outcomes is a bit 
more complicated. Examining the normal distribution of 
random parameters reveals that certain observations in one 
group are more likely to have a severity level, while others 
are less likely. In our model, cyclist age ≥75 (specific to the 
fatal crashes) is a random variable with a mean of 3.29 and 
a standard deviation of 0.66. According to the normal distri-
bution, it can be inferred that 99.9% of the crashes involv-
ing an elderly cyclist had a higher probability of resulting in 
the fatal severity level. The remaining small percentage (< 
0.1%) of the crashes were more likely to result in slight or 
serious injuries. Another significant random parameter is 
the indicator variable driver age = 55-64 (specific to the se-
rious injury level), with a mean of -0.12 and a standard de-
viation of 0.51. The distribution for this variable indicates 
that 59.0% of the crashes where the cyclist collides with a 
driver aged between 55 and 65 years old had a higher prob-
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ability of resulting in a serious injury level, while the re-
maining 41.0% of these crashes were more likely to result in 
one of the other severity levels (slight injury or fatal). Addi-
tionally, the indicator variable for cyclist gender = male has 
resulted a significant random parameters for both fatal and 
serious outcomes. As regards the fatal crashes, the mean 
and the standard deviation of the random parameter cyclist 
gender = male were 0.37 and -0.97, respectively. This indi-
cates that 64.7% of the crashes involving a male cyclist had 
a higher probability of resulting in a fatal outcome, while 
35.3% were more likely to result in a slight or serious in-
jury. For serious outcomes, the mean and the standard de-
viation of the random parameter cyclist gender = male were 
-0.11 and 1.56, respectively. This indicates that 52.8% of 
the crashes with male cyclist were more likely to result in 
severe injuries, while the 47.2% were more likely to result 
in slight injuries or fatalities. 

Among the fixed-effect parameters, high speed limit has 
a dramatic effect on crash severity. The OR of fatal crashes 
associated with speed limit equal to 40 mph (with a base-
line of 30 mph) is 1.60 and increases to 2.96 for speed limit 
≥ 50 mph. If a cyclist crash occurs in a rural area, the prob-
ability of both fatal (OR=1.78) and serious injury crashes 
(OR= 1.25) increases. Compared to the single carriageway 
the road type with the lower probability of fatal crash is 
the roundabout with an OR of 0.65. While dual carriage-
way and slip road have an OR respectively equal to 1.24 
and 2.06. Darkness condition shows greater propensity to-
wards most severe crashes having an OR equal to 1.66 for 
fatal crash and 1.13 for serious crash. The wet/frozen pave-
ment is significant both for fatal crash with an OR of 1.50 
and for serious crash with an OR of 1.09, whereas weekend 
increased the probability of both fatal and serious crashes, 
with an OR respectively equal to 1.53 and 1.16. Bike leaving 
the carriageway nearside, offside ore straight are strongly 
associated with crash severity showing an OR respectively 
of 3.17, 12.91 and 18.95 for fatal crash. Considering vehicle 
2 engine capacity equal to 1501-2000 as baseline, vehicle 2 
engine capacity >3000 is associated with higher probabil-
ity of both fatal crashes exhibiting an OR of 2.24 and se-
rious crash with an OR of 1.13. When the second vehicle 
skids or overturns, there is a significant increase in the like-
lihood of both fatal (OR = 2.79) and serious injury crashes 
(OR = 1.60). Regarding driver related factors, young drivers 
(≤17, 18-24 years old) increased probability of fatal crash. 
The most influential variable is the cyclist age. Compared 
to the young cyclist (25-34), the involvement of an elderly 
cyclist increases the probability of fatal crashes: 35-44 with 
an OR of 1.21, 45-54 with an OR of 1.37, 55-64 with an OR 
of 3.57, 65-74 with an OR of 7.26, and ≥75 (random variable) 
with an OR of 26.90. 

The results of the MLM confirm also that all tested in-
teraction terms are statistically significant, highlighting the 
risk effect associated with the combination of some factors 
on crash severity. The interaction between higher speed 
limits (≥40 mph) and the manoeuvre of the second vehicle 
(going ahead or overtaking) is associated with an increase 
in the probability of fatal crashes (interaction 1-4, OR = 
1.48). However, this effect is not significant for serious 

crashes, suggesting that crashes occurring under these con-
ditions are more likely to be fatal rather than serious. Simi-
larly, the interaction between the second vehicle’s manoeu-
vre and the junction type (not at a junction, crossroads, or 
other junctions) exhibits a positive effect on both fatal (OR 
= 2.22) and serious crashes (OR = 1.23) (interaction 4-9). 
This finding indicates that crashes occurring outside inter-
sections, or at crossroads, become more severe when the 
second vehicle is proceeding straight or overtaking. 

Another significant interaction is observed between 
junction type and the first point of impact of the second ve-
hicle (front) (interaction 9-15). This interaction increases 
the probability of fatal crashes (OR = 1.55). Speed limits of 
20–30 mph combined with the involvement of a truck also 
show an effect on crash severity (interaction 2-5). While 
this interaction increases the likelihood of fatal crashes (OR 
= 1.37), it is negatively associated with serious crashes (OR 
= 0.66). This suggests that although lower-speed environ-
ments generally reduce crash severity, the presence of truck 
vehicles can still result in fatal consequences. 

The most pronounced effect is observed for the inter-
action between the involvement of a truck the age of the 
second driver (25–74 years old) (interaction 5-11). This in-
teraction significantly increases the likelihood of both fatal 
(OR = 6.04) and serious crashes (OR = 2.53). 

Finally, the interaction between driver age and the type 
of road (A roads or motorways) is associated with an in-
crease in fatal crash risk (OR = 1.49) and a slight increase 
in serious crashes (OR = 1.06) (interaction 11-17). This sug-
gests that driving behaviour among older age groups, par-
ticularly in high-speed road environments, can influence 
crash severity outcomes. 

Thus, the results indicate that specific combinations of 
factors, such as speed limits, vehicle type, driver age, and 
road design, can significantly increase crash severity risks. 

The MLM shows a robust fit with a McFadden Pseudo R2 

of 0.21. F-measures is reasonable for serious injuries (0.29) 
but less satisfactory for fatal crashes (0.06). G-mean reveals 
differences in classification performance, with the model 
exhibiting higher effectiveness for fatal crashes (0.80) com-
pared to serious injuries (0.51) (Table 6). 

6. Discussion   

The study findings confirm the significant function of 
vehicle speed, with higher speed limits increasing the prob-
ability of serious and fatal outcomes. These results align 
with previous research (Boufous et al., 2012; Isaksson-Hell-
man & Toreki, 2019; Kaplan et al., 2014; Montella et al., 
2015; Z. Wang et al., 2021). Higher speeds are critical when 
the second vehicle is going ahead or overtaking (interaction 
1-4). However, even at moderate speeds (20-30 mph), with 
specific conditions, such as crashes involving trucks, can 
increase fatality risk (interaction 2-5). To reduce these 
risks, speed management strategies and bike network im-
provement are needed, as showed by other researchers 
(Damsere-Derry & Bawa, 2018; Samerei et al., 2021; Tuckel, 
2021). Furthermore, develop cycle paths and marked lanes, 
physically separating cyclists from other road users, can 
significantly improve cyclist safety. To accommodate hu-
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Table 5. Estimated parameters and OR for cyclist crash severity         

Variable Fatal Serious 

β OR Std. Err. p-value β OR Std. Err. p-value 

Intercept -1.86 0.16 0.06 <0.001 -0.33 0.72 0.04 0.01 

Speed Limit (30 mph as baseline) 

20 -0.08 0.92 0.03 <0.001 

40 0.47 1.60 0.06 <0.001 0.17 1.19 0.05 <0.001 

≥ 50 1.08 2.96 0.06 <0.001 0.50 1.64 0.06 <0.001 

Area (Urban as baseline) 

Rural 0.57 1.78 0.04 <0.001 0.22 1.25 0.03 <0.001 

Junction control (Not at junction or within 20m as baseline) 

Give way/Stop -0.53 0.59 0.03 <0.001 -0.05 0.95 0.02 0.02 

Traffic lights 0.32 1.38 0.05 <0.001 

Pedestrian crossing physical facilities (No physical crossing facilities within 50m baseline) 

Central refuge 0.69 2.00 0.06 <0.001 

Pedestrian phase at traffic signal 
junction 

0.14 1.15 0.05 <0.001 -0.19 0.83 0.04 <0.001 

Zebra 0.22 1.24 0.04 <0.001 -0.15 0.86 0.04 0.00 

Road type (Single carriageway as baseline) 

Dual carriageway 0.22 1.24 0.04 <0.001 0.09 1.09 0.04 0.01 

Roundabout -0.43 0.65 0.05 <0.001 -0.10 0.90 0.03 0.00 

Slip road 0.72 2.06 0.13 <0.001 

Lighting (Daylight as baseline) 

Darkness 0.51 1.66 0.03 <0.001 0.12 1.13 0.02 <0.001 

Pavement (Dry as baseline) 

Wet/Frozen 0.41 1.50 0.04 <0.001 0.08 1.09 0.03 <0.001 

Weather (Clear as baseline) 

Raining -0.48 0.62 0.05 <0.001 -0.19 0.83 0.04 <0.001 

Day of week (Weekday as baseline) 

Weekend 0.43 1.53 0.03 <0.001 0.15 1.16 0.02 <0.001 

Number of bikes (1 as baseline) 

>1 0.61 1.83 0.10 <0.001 0.77 2.17 0.08 <0.001 

Bike 1st point of impact (No impact as baseline) 

Back -0.55 0.57 0.05 -0.32 0.73 0.04 <0.001 

Front -0.35 0.71 0.04 <0.001 0.06 1.07 0.03 0.05 

Nearside/Offside -0.63 0.53 0.05 <0.001 -0.14 0.87 0.03 <0.001 

Bike leaving carriageway (No as baseline) 

Nearside 1.15 3.17 0.07 <0.001 0.35 1.42 0.06 <0.001 

Offside 2.56 12.91 0.19 <0.001 0.68 1.98 0.20 <0.001 

Straight 2.94 18.95 0.34 <0.001 

Vehicle 2 skidding and overturning (No as baseline) 

Yes 1.03 2.79 0.11 <0.001 0.47 1.60 0.10 <0.001 

Vehicle 2 engine capacity (1501-2000 as baseline) 

≤ 1000 0.22 1.25 0.05 <0.001 -0.08 0.92 0.04 0.04 

1000-1500 -0.26 0.77 0.03 <0.001 -0.09 0.92 0.02 <0.001 

>3000 0.81 2.24 0.08 <0.001 0.26 1.30 0.06 <0.001 

Vehicle 2 age (≤ 15 as baseline) 

>15 -0.42 0.65 0.06 <0.001 -0.49 0.61 0.01 <0.001 

man errors, it is recommended to implement “forgiving” 
sloped kerbs, given that studies show its superiority com-
pared to right-angled kerbs (Janssen et al., 2018). 

Within road-related variables, crashes occurred in rural 
areas, characterized by higher speed limits, significantly in-
crease the likelihood of fatal or serious injury severity. Fur-
thermore, roundabouts are associated with a lower risk of 
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Table 5. Estimated parameters and OR for cyclist crash severity (Continuation)          

Variable Fatal Serious 

β OR Std. Err. p-value β OR Std. Err. p-value 

Driver 2 gender (Female as baseline) 

Male -0.08 0.92 0.02 <0.001 

Driver 2 age (25-34 as baseline) 

≤17 0.84 2.33 0.14 <0.001 0.20 1.22 0.12 0.10 

18-24 0.33 1.40 0.05 <0.001 0.21 1.24 0.04 <0.001 

35-44 <0.001 

45-54 -0.36 0.70 0.04 <0.001 

55-64 (random variable for serious crashes) 0.15 1.16 0.04 <0.001 -0.12 0.89 0.05 0.01 

St. dev. 55-64 0.51 — 0.19 0.01 

65-74 -0.72 0.48 0.06 <0.001 

≥75 -0.19 0.83 0.07 <0.001 0.26 1.30 0.05 <0.001 

Cyclist IMD decile (Less deprived as baseline) 

More deprived -0.11 0.89 0.02 <0.001 

Cyclist gender (Female as baseline) 

Male (random variable for serious and fatal 
crashes) 

0.37 1.44 0.02 <0.001 -0.11 0.90 0.03 <0.001 

St. dev. Male -0.97 — 0.03 <0.001 1.56 — 0.06 <0.001 

Cyclist age (25-34 as baseline) 

≤17 -0.40 0.67 0.04 <0.001 -0.10 0.91 0.03 <0.001 

18-24 -0.11 0.90 0.04 0.01 

35-44 0.19 1.21 0.04 <0.001 0.17 1.19 0.03 <0.001 

45-54 0.31 1.37 0.04 <0.001 0.35 1.42 0.03 <0.001 

55-64 1.27 3.57 0.04 <0.001 0.54 1.72 0.04 <0.001 

65-74 1.98 7.26 0.07 <0.001 0.68 1.98 0.06 <0.001 

≥75 (random variable for fatal crashes) 3.29 26.90 0.07 <0.001 0.97 2.64 0.12 <0.001 

St. dev. ≥75 -0.66 — 0.10 <0.001 

Cyclist journey purpose (Commuting to from work as baseline) 

Journey as part of work -0.51 0.60 0.06 <0.001 -0.06 0.94 0.03 0.08 

To/from school -0.23 0.79 0.05 <0.001 

Interactions 

Int 1-4 (SL= 40, ≥50 -V2man = going ahead, 
overtaking) 

0.39 1.48 0.07 <0.001 

Inter 4-9 (V2man = going ahead, overtaking – 
JunDet= not at junction, crossroads, other 
junctions) 

0.80 2.22 0.03 <0.001 0.20 1.23 0.02 <0.001 

Inter 9-15 (JunDet= not at junction, 
crossroads, other junctions – V2FPI= front) 

0.44 1.55 0.03 <0.001 -0.08 0.92 0.02 <0.001 

Inter 2-5 (SL=30, 20 – V2Type= truck, other) 0.32 1.37 0.10 <0.001 -0.41 0.66 0.09 <0.001 

Inter 5-11 (V2Type= truck, other – 
D2age=25-34, 35-44, 45-54, 55-64, 65-74) 

1.80 6.04 0.12 <0.001 0.93 2.53 0.12 <0.001 

Inter 11_17(D2age=25-34, 35-44, 45-54, 
55-64, 
65-74 - FRC= A, Motorway) 

0.40 1.49 0.03 <0.001 0.06 1.06 0.02 0.01 

Log likelihood null model =-79 499; Log likelihood full model = -62 825. 
Abbreviations: SL= speed limit; V2man= vehicle 2 manoeuvre; JunDet= Junction detail; V2FPI= Vehicle 2 First point of impact; V2Type= Vehicle 2 type; D2age= Driver 2 age, FRC= 
First road class 

both fatal and serious crashes. Roundabouts achieve this 
result by forcing vehicles to reduce speed through deflec-
tion, as showed by previous studies (Gross et al., 2013; 
Montella, 2007, 2011; Rella Riccardi, Augeri, et al., 2022; 
Silvano & Linder, 2017). On the other hand, the interaction 
between the second vehicle’s manoeuvre (going ahead or 
overtaking) and specific junction type (crossroads or other 
junctions) highlights an increased risk of severe crashes 
in these scenarios (interaction 4-9). Additionally, crashes 

where the second vehicle’s first point of impact is the front, 
occurring in these same junction types, show a higher prob-
ability of being fatal (interaction 9-15). These findings sug-
gest that improving intersection safety is needed. This is 
possible by implementing junction with clear cyclist prior-
ity, and improved road markings. 

Beyond road-related factors, environmental conditions 
are drastically associated with cyclist crash severity. Partic-
ularly, lighting conditions is a critical factor since crashes 
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Table 6. MLM performance metrics    

Severity level F-measure G-mean McFadden 
R2 

Fatal 0.06 0.80 0.21 

Serious 
injury 

0.29 0.51 

Slight injury 0.73 0.59 

occurring during nighttime are associated with an increase 
in probability of fatal and serious outcomes. The use of 
lighting systems with light-emitting diodes (LEDs), the en-
forcement of mandatory bike light installations, and the 
promotion of reflective clothing use can improve visibility 
during nighttime conditions and on unlit streets. Moreover, 
wet, or frozen pavements are identified as significant con-
tributors resulting in an increased likelihood of cyclist fatal 
crashes. These observations are in line with the findings of 
previous research (Wahi et al., 2018; C. Wang et al., 2015). 
Improving road surface conditions is also necessary, partic-
ularly in wet or frozen conditions where skidding is more 
likely. Using permeable surfaces, such as permeable asphalt 
or concrete, which help absorb water into the ground and 
reduce the risk of skidding. 

The analysis also highlights the impact of the second ve-
hicle’s characteristics on crash severity. In particular, truck 
involvement is associated with increased fatality risks for 
cyclists, especially when the truck is driven by driver aged 
25–74 (interaction 5-11). This interaction shows that dri-
ving experience is not always enough to avoid dangers 
when operating heavy vehicles. These manoeuvres often 
involve complex spatial dynamics, longer braking distances 
for trucks, and blind spots that may limit the truck driver 
capacity to detect cyclists. These results are in line with 
the findings of previous research (Chen & Shen, 2016; 
Damsere-Derry & Bawa, 2018; Joo et al., 2017; Kaplan et 
al., 2014; van Haperen et al., 2018). The progress and inte-
gration of safety systems in truck, particularly active safety 
systems, can improve road safety. Moreover, placing mir-
rors on signal posts eliminates blind spots for truck drivers, 
improving visibility and reducing crash risks. 

On the other hand, regarding bike related factors, the 
bike leaving the carriageway offside is associated with more 
severe outcomes. This can be attributed to the increased cy-
clist exposure to collisions with the other motor vehicles 
or obstacles. To address this issue, effective strategies are 
needed to promote safe riding behaviours such as targeted 
road safety education and the development of safe infra-
structure with appropriate and clear road markings and 
road signs. 

As regards the cyclist characteristics, the model results 
indicate a correlation between cyclist crash severity and 
the ages of both the cyclist and the driver. Infact, as the 
cyclist age increases, there is a corresponding rise in the 
probability of serious or fatal outcomes. Conversely, an in-
verse relationship is observed for the age of the driver, with 
younger drivers associated with an increased likelihood of 
severe consequences. Moreover, the interaction between 

driver age and road class shows that crashes on A roads 
and motorways are more likely to result in severe outcomes 
when the driver is between 25 and 74 years old (interac-
tion 11_17). These findings are in line with previous stud-
ies (Oikawa et al., 2019; Scholes et al., 2018; C. Wang et al., 
2015). To address these critical factors, targeted interven-
tions are needed, such as promoting awareness campaigns 
emphasizing safe cycling practices or driver education pro-
grams. Furthermore, advanced driver assistance systems in 
vehicles may reduce the crash risk. 

7. Conclusions   

The road crash statistics indicate that, despite the efforts 
made by the member states of the European Union and 
the United Nations to protect VRUs, coupled with signif-
icant scientific and engineering progress, the issue of cy-
clist crashes cannot be deemed resolved. Thus, especially 
now that a growing number of cities is promoting cycling 
as an economic, green, healthy, and efficient way of trans-
port, the cycling safety deserves attention as well as in-
depth research. To identify patterns associated with severe 
injuries and fatal crashes involving cyclists and improve cy-
clist safety, this research utilized a combination of tradition 
econometric model known as MLM, and emerging machine 
learning methodology, represented by the CT algorithm. 

The study focused on the analysis of cyclist crash data 
spanning the period from 2016 to 2019 in Great Britain. 
The CT model served as an exploratory tool to detect pat-
terns and potential interactions that might not have been 
hypothesized a priori, whereas the MLM was used to test all 
variables consistently, quantify global effects, and obtain 
statistical significance. Furthermore, the interactions de-
rived from the CT analysis were incorporated into the MLM. 
Interestingly, all the interactions were statistically signifi-
cant. 

The CT model is explicitly used as a supporting tool to 
identify potential interactions, while conclusions are ex-
tracted from the MLM results. Based on the identified risk 
factors, a set of targeted safety countermeasures has been 
proposed to minimize cyclist crash severity and improve 
overall road safety. 

In conclusion, this research not only shows the persis-
tent and significant issue of cyclist crashes but also intro-
duces a new perspective in their understanding and man-
agement. Thus, the study ensures that the factors 
influencing cyclist crash severity are tested in a statistically 
consistent manner within the MLM, using insights from the 
CT model to refine the regression analysis. Furthermore, 
these insights are translated into actionable countermea-
sures, offering a detailed plan aimed at mitigating cyclist 
crash severity and improving overall road safety. 

CRediT contribution statement    

Antonella Scarano : Conceptualization, Formal analy-
sis, Methodology, Software, Writing—original draft, Writ-
ing—review & editing. Maria Rella Riccardi  : Conceptu-

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 14



alization, Methodology, Writing—review & editing. 
Filomena Mauriello : Conceptualization, Methodology, 
Writing—review & editing. Carmelo D’Agostino : Concep-
tualization, Writing—review & editing. Alfonso Montella : 
Conceptualization, Methodology, Supervision, Writing—re-
view & editing. 

Declaration of competing interest     

The authors declare that they have no known competing 
financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

Declaration of generative AI use in writing        

The authors declare that no generative AI was used in 
this work. 

Acknowledgement  

An earlier version of this work was presented as a poster 
at the 35th ICTCT Conference in Catania, Italy, on 26–27 
October 2023, titled “Challenges and Actual Opportunities 
Offered by New Technologies to Improve Traffic Safety.” It 
was awarded the Best Presentation Award. 

Ethics statement   

Crash data used in this research were collected by the 
Department for Transport (GOV.UK) and were retrieved 
from the STATS19 dataset (https://www.gov.uk/transport-
statistics-notes-and-guidance-road-accident-and-safety). 
Thus, this research was exempted from requiring an ethical 
approval. 

Funding  

No external funding was used in this research. 

Editorial information   

One of the authors, Carmelo D’Agostino, is a member of 
the editorial board of the Traffic Safety Research journal. To 
minimize the risk for conflict of interest during the review 
process, an external guest editor was called to handle this 
paper. 

Guest editor: Ragnhild Davidse , SWOV Institute for 
Road Safety Research, the Netherlands 

Reviewer: Paul Schepers , Ministry of Infrastructure and 
Water Management, the Netherlands 

Submitted: September 03, 2024 CEST. Accepted: April 24, 2025 
CEST. Published: May 19, 2025 CEST. 

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License 

(CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/by/4.0 and legal code at http://creativecom-

mons.org/licenses/by/4.0/legalcode for more information. 

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 15

http://gov.uk/
https://www.gov.uk/transport-statistics-notes-and-guidance-road-accident-and-safety
https://www.gov.uk/transport-statistics-notes-and-guidance-road-accident-and-safety


References  

Abellán, J., López, G., & De OñA, J. (2013). Analysis of 
traffic accident severity using decision rules via 
decision trees. Expert Systems with Applications, 
40(15), 6047–6054. https://doi.org/10.1016/
j.eswa.2013.05.027 

Adminaitė, D., & Jost, G. (2020). How safe is walking and 
cycling in Europe? - PIN Flash report 38. European 
Transport Research Centre. 

Akgun, N., Dissanayake, D., Thorpe, N., & Bell, Mc. 
(2018). Cyclist casualty severity at roundabouts - to 
what extent do the geometric characteristics of 
roundabouts play a part? Journal of Safety Research, 
67. https://doi.org/10.1016/j.jsr.2018.09.004 

Alogaili, A., & Mannering, F. (2020). Unobserved 
heterogeneity and the effects of driver nationality on 
crash injury severities in Saudi Arabia. Accident 
Analysis & Prevention, 144, 105618. https://doi.org/
10.1016/j.aap.2020.105618 

Anastasopoulos, P. C., & Mannering, F. (2011). An 
empirical assessment of fixed and random parameter 
logit models using crash- and non-crash-specific 
injury data. Accident Analysis and Prevention, 43(3), 
1140–1147. https://doi.org/10.1016/j.aap.2010.12.024 

Andreß, H. J., Golsch, K., & Schmidt, A. W. (2013). 
Applied panel data analysis for economic and social 
surveys. SSBM. https://doi.org/10.1007/
978-3-642-32914-2 

Anysz, H., Wlodarek, P., Olszewski, P., & Cafiso, S. 
(2021). Identifying factors and conditions 
contributing to cyclists’ serious accidents with the 
use of association analysis. Archives of Civil 
Engineering, 67. https://doi.org/10.24425/
ace.2021.138051 

Bahrololoom, S., Young, W., & Logan, D. (2020). 
Modelling injury severity of bicyclists in bicycle-car 
crashes at intersections. Accident Analysis & 
Prevention, 144, 105597. https://doi.org/10.1016/
j.aap.2020.105597 

Balakrishnan, S., Moridpour, S., & Tay, R. (2019). 
Sociodemographic Influences on Injury Severity in 
Truck-Vulnerable Road User Crashes. ASCE-ASME 
Journal of Risk and Uncertainty in Engineering Systems 
Part A: Civil Engineering, 5(4). https://doi.org/
10.1061/AJRUA6.0001023 

Behnood, A., & Mannering, F. (2017). Determinants of 
bicyclist injury severities in bicycle-vehicle crashes: A 
random parameters approach with heterogeneity in 
means and variance. Analytic Methods in Accident 
Research, 16, 35–47. https://doi.org/10.1016/
j.amar.2017.08.001 

Boufous, S., De Rome, L., Senserrick, T., & Ivers, R. 
(2012). Risk factors for severe injury in cyclists 
involved in traffic crashes in Victoria, Australia. 
Accident Analysis and Prevention, 49. https://doi.org/
10.1016/j.aap.2012.03.011 

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. 
J. (1984). Classification and Regression Trees. 
Wadsworth International Group. 

Burnham, K. P., & Anderson, D. R. (2004). Multimodel 
Inference: Understanding AIC and BIC in Model 
Selection. Sociological Methods & Research, 33(2), 
261–304. https://doi.org/10.1177/0049124104268644 

Chang, L. Y., & Wang, H. W. (2006). Analysis of traffic 
injury severity: an application of non-parametric 
classification tree techniques. Accident Analysis and 
Prevention, 38(5), 1019–1027. https://doi.org/10.1016/
j.aap.2006.04.009 

Chen, P., & Shen, Q. (2016). Built environment effects 
on cyclist injury severity in automobile-involved 
bicycle crashes. Accident Analysis & Prevention, 86, 
239–246. https://doi.org/10.1016/j.aap.2015.11.002 

Damsere-Derry, J., & Bawa, S. (2018). Bicyclists’ 
accident pattern in northern Ghana. IATSS Research, 
42. https://doi.org/10.1016/j.iatssr.2017.10.002 

Das, S., Tamakloe, R., Zubaidi, H., Obaid, I., & Rahman, 
M. A. (2023). Bicyclist injury severity classification 
using a random parameter logit model. International 
Journal of Transportation Science and Technology, 
12(4), 1093–1108. https://doi.org/10.1016/
j.ijtst.2023.02.001 

Dash, I., Abkowitz, M., & Philip, C. (2022). Factors 
impacting bike crash severity in urban areas. Journal 
of Safety Research, 83, 128–138. https://doi.org/
10.1016/j.jsr.2022.08.010 

Department for Transport. (2023). Reported road 
casualties in Great Britain: pedal cycle factsheet 2022. 

European Commission. (2020). European Road Safety 
Observatory Facts and Figures - Cyclists – 2020. 

European Union. (2021). Regulation (EU) 2021/1119 of 
the European parliament and of the council of 30 
June 2021 establishing the framework for achieving 
climate neutrality and amending Regulations (EC) No 
401/2009 and (EU) 2018/1999 (‘European Climate 
Law’). Official Journal of the European Union. 

Gross, F., Lyon, C., Persaud, B., & Srinivasan, R. (2013). 
Safety effectiveness of converting signalized 
intersections to roundabouts. Accident Analysis & 
Prevention, 50, 234–241. https://doi.org/10.1016/
j.aap.2012.04.012 

Iragavarapu, V., Lord, D., & Fitzpatrick, K. (2015). 
Analysis of injury severity in pedestrian crashes using 
classification regression trees (TRB Nos. 15–2926). 

Isaksson-Hellman, I., & Toreki, J. (2019). The effect of 
speed limit reductions in urban areas on cyclists’ 
injuries in collisions with cars. Traffic Injury 
Prevention, 20. https://doi.org/10.1080/
15389588.2019.1680836 

Islam, M., Hosseini, P., & Jalayer, M. (2022). An analysis 
of single-vehicle truck crashes on rural curved 
segments accounting for unobserved heterogeneity. 
Journal of Safety Research, 80, 148–159. https://
doi.org/10.1016/j.jsr.2021.11.011 

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 16

https://doi.org/10.1016/j.eswa.2013.05.027
https://doi.org/10.1016/j.eswa.2013.05.027
https://doi.org/10.1016/j.jsr.2018.09.004
https://doi.org/10.1016/j.aap.2020.105618
https://doi.org/10.1016/j.aap.2020.105618
https://doi.org/10.1016/j.aap.2010.12.024
https://doi.org/10.1007/978-3-642-32914-2
https://doi.org/10.1007/978-3-642-32914-2
https://doi.org/10.24425/ace.2021.138051
https://doi.org/10.24425/ace.2021.138051
https://doi.org/10.1016/j.aap.2020.105597
https://doi.org/10.1016/j.aap.2020.105597
https://doi.org/10.1061/AJRUA6.0001023
https://doi.org/10.1061/AJRUA6.0001023
https://doi.org/10.1016/j.amar.2017.08.001
https://doi.org/10.1016/j.amar.2017.08.001
https://doi.org/10.1016/j.aap.2012.03.011
https://doi.org/10.1016/j.aap.2012.03.011
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1016/j.aap.2006.04.009
https://doi.org/10.1016/j.aap.2006.04.009
https://doi.org/10.1016/j.aap.2015.11.002
https://doi.org/10.1016/j.iatssr.2017.10.002
https://doi.org/10.1016/j.ijtst.2023.02.001
https://doi.org/10.1016/j.ijtst.2023.02.001
https://doi.org/10.1016/j.jsr.2022.08.010
https://doi.org/10.1016/j.jsr.2022.08.010
https://doi.org/10.1016/j.aap.2012.04.012
https://doi.org/10.1016/j.aap.2012.04.012
https://doi.org/10.1080/15389588.2019.1680836
https://doi.org/10.1080/15389588.2019.1680836
https://doi.org/10.1016/j.jsr.2021.11.011
https://doi.org/10.1016/j.jsr.2021.11.011


Islam, S., & Hossain, A. B. (2015). Comparative Analysis 
of Injury Severity Resulting from Pedestrian–Motor 
Vehicle and Bicycle-Motor Vehicle Crashes on 
Roadways in Alabama. Transportation Research 
Record, 2514(1), 79–87. https://doi.org/10.3141/
2514-09 

Janssen, B., Schepers, P., Farah, H., & Hagenzieker, M. 
(2018). Behaviour of cyclists and pedestrians near 
right angled sloped and levelled kerb types: Do risks 
associated to height differences of kerbs weigh up 
against other factors? European Journal of Transport 
and Infrastructure Research, 18(4). https://doi.org/
10.18757/ejtir.2018.18.4.3254 

Joo, S., Jung, S., & Oh, C. (2017). Integration of 
heuristic and statistical methods for estimation of 
cyclist injury severity. KSCE Journal of Civil 
Engineering, 21. https://doi.org/10.1007/
s12205-016-0777-x 

Kaplan, S., Vavatsoulas, K., & Prato, C. (2014). 
Aggravating and mitigating factors associated with 
cyclist injury severity in Denmark. Journal of Safety 
Research, 50. https://doi.org/10.1016/j.jsr.2014.03.012 

Kashani, A. T., & Mohaymany, A. S. (2011). Analysis of 
the traffic injury severity on two-lane two-way rural 
roads based on classification tree models. Safety 
Science, 49(10), 1314–1320. https://doi.org/10.1016/
j.ssci.2011.04.019 

Katanalp, B. Y., & Eren, E. (2020). The novel approaches 
to classify cyclist accident injury-severity: Hybrid 
fuzzy decision mechanisms. Accident Analysis & 
Prevention, 144, 105590. https://doi.org/10.1016/
j.aap.2020.105590 

Kozłowski, E., Borucka, A., Świderski, A., & Skoczyński, 
P. (2021). Classification Trees in the Assessment of 
the Road–Railway Crashes Mortality. Energies, 14, 
3462. https://doi.org/10.3390/en14123462 

Kwon, O. H., Rhee, W., & Yoon, Y. (2015). Application of 
classification algorithms for analysis of road safety 
risk factor dependencies. Accident Analysis & 
Prevention, 75, 1–15. https://doi.org/10.1016/
j.aap.2014.11.005 

Liu, J., Khattak, A. J., Li, X., Nie, Q., & Ling, Z. (2020). 
Bicyclist injury severity in traffic crashes: A spatial 
approach for geo-referenced crash data to uncover 
non-stationary correlates. Journal of Safety Research, 
73, 25–35. https://doi.org/10.1016/j.jsr.2020.02.006 

Liu, S., Lin, Z., & Fan, W. (2021). Investigating Factors 
Affecting Injury Severity in Bicycle-Vehicle Crashes: 
A Day-of-Week Analysis with Partial Proportional 
Odds Logit Models. Canadian Journal of Civil 
Engineering. https://doi.org/10.1139/cjce-2020-0378 

López, G., Abellán, J., Montella, A., & de Oña, J. (2014). 
Patterns of single-vehicle crashes on two-lane rural 
highways in Granada Province, Spain: in-depth 
analysis through decision rules. Transportation 
Research Record, 2432(1), 133–141. https://doi.org/
10.3141/2432-16 

Lord, D., Qin, X., & Geedipally, S. R. (2021). Highway 
safety analytics and modeling. 

Macioszek, E., & Granà, A. (2022). The Analysis of the 
Factors Influencing the Severity of Bicyclist Injury in 
Bicyclist-Vehicle Crashes. Sustainability, 14, 215. 
https://doi.org/10.3390/su14010215 

Mannering, F., Bhat, C. R., Shankar, V., & Abdel-Aty, M. 
(2020). Big data, traditional data, and the tradeoffs 
between prediction and causality in highway-safety 
analysis. Analytic Methods in Accident Research, 25, 
100113. https://doi.org/10.1016/j.amar.2020.100113 

Mannering, F. L., Shankar, V., & Bhat, C. R. (2016). 
Unobserved heterogeneity and the statistical analysis 
of highway accident data. Analytic Methods in 
Accident Research, 11, 1–16. https://doi.org/10.1016/
j.amar.2016.04.001 

McFadden, D., & Train, K. E. (2000). Mixed MNL models 
for discrete response. Journal of Applied Econometrics, 
15, 447–470. https://doi.org/10.1002/
1099-1255(200009/10)15:5%3C447::AID-
JAE570%3E3.0.CO;2-1 

Mohanty, M., Panda, R., Gandupalli, S. R., Arya, R. R., 
& Lenka, S. K. (2022). Factors propelling fatalities 
during road crashes: A detailed investigation and 
modelling of historical crash data with field studies. 
Heliyon, 8(11). https://doi.org/10.1016/
j.heliyon.2022.e11531 

Montella, A. (2007). Roundabout In-Service Safety 
Reviews: Safety Assessment Procedure. 
Transportation Research Record, 2019, 40–50. https://
doi.org/10.3141/2019-17 

Montella, A. (2011). Identifying crash contributory 
factors at urban roundabouts and using association 
rules to explore their relationships to different crash 
types. Accident Analysis and Prevention, 43(4), 
1451–1463. https://doi.org/10.1016/j.aap.2011.02.023 

Montella, A., Aria, M., D’Ambrosio, A., & Mauriello, F. 
(2011). Data-Mining Techniques for Exploratory 
Analysis of Pedestrian Crashes. Transportation 
Research Record, 2237, 107–116. https://doi.org/
10.3141/2237-12 

Montella, A., Aria, M., D’Ambrosio, A., & Mauriello, F. 
(2012). Analysis of powered two-wheeler crashes in 
Italy by classification trees and rules discovery. 
Accident Analysis and Prevention, 49, 58–72. https://
doi.org/10.1016/j.aap.2011.04.025 

Montella, A., Chiaradonna, S., de Saint, C., Mihiel, A., 
Lovegrove, G., Nunziante, P., & Rella Riccardi, M. 
(2022). Sustainable Complete Streets Design Criteria 
and Case Study in Naples, Italy. Sustainability, 14, 
13142. https://doi.org/10.3390/su142013142 

Montella, A., de Oña, R., Mauriello, F., Rella Riccardi, 
M., & Silvestro, G. (2020). A data mining approach to 
investigate patterns of powered two-wheeler crashes 
in Spain. Accident Analysis and Prevention, 134, 
105251. https://doi.org/10.1016/j.aap.2019.07.027 

Montella, A., Imbriani, L. L., Marzano, V., & Mauriello, 
F. (2015). Effects on speed and safety of point-to-
point speed enforcement systems: Evaluation on the 
urban motorway A56 Tangenziale di Napoli. Accident 
Analysis and Prevention, 75, 164–178. https://doi.org/
10.1016/j.aap.2014.11.022 

Montella, A., Mauriello, F., Pernetti, M., & Rella 
Riccardi, M. (2021). Rule discovery to identify 
patterns contributing to overrepresentation and 
severity of run-off-the-road crashes. Accident Analysis 
and Prevention, 155, 106119. https://doi.org/10.1016/
j.aap.2021.106119 

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 17

https://doi.org/10.3141/2514-09
https://doi.org/10.3141/2514-09
https://doi.org/10.18757/ejtir.2018.18.4.3254
https://doi.org/10.18757/ejtir.2018.18.4.3254
https://doi.org/10.1007/s12205-016-0777-x
https://doi.org/10.1007/s12205-016-0777-x
https://doi.org/10.1016/j.jsr.2014.03.012
https://doi.org/10.1016/j.ssci.2011.04.019
https://doi.org/10.1016/j.ssci.2011.04.019
https://doi.org/10.1016/j.aap.2020.105590
https://doi.org/10.1016/j.aap.2020.105590
https://doi.org/10.3390/en14123462
https://doi.org/10.1016/j.aap.2014.11.005
https://doi.org/10.1016/j.aap.2014.11.005
https://doi.org/10.1016/j.jsr.2020.02.006
https://doi.org/10.1139/cjce-2020-0378
https://doi.org/10.3141/2432-16
https://doi.org/10.3141/2432-16
https://doi.org/10.3390/su14010215
https://doi.org/10.1016/j.amar.2020.100113
https://doi.org/10.1016/j.amar.2016.04.001
https://doi.org/10.1016/j.amar.2016.04.001
https://doi.org/10.1002/1099-1255(200009/10)15:5%3C447::AID-JAE570%3E3.0.CO;2-1
https://doi.org/10.1002/1099-1255(200009/10)15:5%3C447::AID-JAE570%3E3.0.CO;2-1
https://doi.org/10.1002/1099-1255(200009/10)15:5%3C447::AID-JAE570%3E3.0.CO;2-1
https://doi.org/10.1016/j.heliyon.2022.e11531
https://doi.org/10.1016/j.heliyon.2022.e11531
https://doi.org/10.3141/2019-17
https://doi.org/10.3141/2019-17
https://doi.org/10.1016/j.aap.2011.02.023
https://doi.org/10.3141/2237-12
https://doi.org/10.3141/2237-12
https://doi.org/10.1016/j.aap.2011.04.025
https://doi.org/10.1016/j.aap.2011.04.025
https://doi.org/10.3390/su142013142
https://doi.org/10.1016/j.aap.2019.07.027
https://doi.org/10.1016/j.aap.2014.11.022
https://doi.org/10.1016/j.aap.2014.11.022
https://doi.org/10.1016/j.aap.2021.106119
https://doi.org/10.1016/j.aap.2021.106119


Moral-Garcia, S., Castellano, J. G., Mantas, J. G., 
Montella, A., & Abellan, J. (2019). Decision tree 
ensemble method for analyzing traffic accidents of 
novice drivers in urban areas. Entropy, 21, 360. https:/
/doi.org/10.3390/e21040360 

Norton, E. C., & Dowd, B. E. (2018). Log Odds and the 
Interpretation of Logit Models. Health Services 
Research, 53(2), 859–878. https://doi.org/10.1111/
1475-6773.12712 

Oikawa, S., Matsui, Y., Nakadate, H., & Aomura, S. 
(2019). Factors in fatal injuries to cyclists impacted 
by five types of vehicles. International Journal of 
Automotive Technology, 20. https://doi.org/10.1007/
s12239-019-0019-6 

Pande, A., Abdel-Aty, M., & Das, A. (2010). A 
classification tree based modeling approach for 
segment related crashes on multilane highways. 
Accident Analysis & Prevention, 41(5), 391–397. 
https://doi.org/10.1016/j.jsr.2010.06.004 

Prati, G., Pietrantoni, L., & Fraboni, F. (2017). Using 
data mining techniques to predict the severity of 
bicycle crashes. Accident Analysis and Prevention, 101, 
44–54. https://doi.org/10.1016/j.aap.2017.01.008 

Rahimi, A., Azimi, G., Asgari, H., Rahimi, A., & Jin, X. 
(2020). Injury Severity of Pedestrian and Bicyclist 
Crashes Involving Large Trucks. International 
Conference on Transportation and Development 2020. 
https://doi.org/10.1061/9780784483152.010 

Rella Riccardi, M., Augeri, M. G., Galante, F., Mauriello, 
F., Nicolosi, V., & Montella, A. (2022). Safety Index 
for evaluation of urban roundabouts. Accident 
Analysis & Prevention, 178, 106858. https://doi.org/
10.1016/j.aap.2022.106858 

Rella Riccardi, M., Galante, F., Scarano, A., & Montella, 
A. (2022). Econometric and machine learning 
methods to identify pedestrian crash patterns. 
Sustainability, 14, 15471. https://doi.org/10.3390/
su142215471 

Rella Riccardi, M., Mauriello, F., Sarkar, S., Galante, F., 
Scarano, A., & Montella, A. (2022). Parametric and 
Non-Parametric Analyses for Pedestrian Crash 
Severity Prediction in Great Britain. Sustainability, 
14(6), 3188. https://doi.org/10.3390/su14063188 

Rella Riccardi, M., Mauriello, F., Scarano, A., & 
Montella, A. (2022). Analysis of contributory factors 
of fatal pedestrian crashes by mixed logit model and 
association rules. International Journal of Injury 
Control and Safety Promotion. https://doi.org/10.1080/
17457300.2022.2116647 

Rezapour, M., Molan, A. M., & Ksaibati, K. (2019). 
Analyzing injury severity of motorcycle at-fault 
crashes using machine learning techniques, decision 
tree, and logistic regression models. International 
Journal of Transportation Science and Technology, 9(2), 
89–99. https://doi.org/10.1016/j.ijtst.2019.10.002 

Salon, D., & Mcintyre, A. (2018). Determinants of 
pedestrian and bicyclist crash severity by party at 
fault in San Francisco, CA. Accident Analysis and 
Prevention, 110. https://doi.org/10.1016/
j.aap.2017.11.007 

Samerei, S. A., Aghabayk, K., Shiwakoti, N., & 
Mohammadi, A. (2021). Using latent class clustering 
and binary logistic regression to model Australian 
cyclist injury severity in motor vehicle-bicycle 
crashes. Journal of Safety Research, 79. https://doi.org/
10.1016/j.jsr.2021.09.005 

Scarano, A., Aria, M., Mauriello, F., Rella Riccardi, M., 
& Montella, A. (2023). Systematic literature review of 
10 years of cyclist safety research. Accident Analysis 
and Prevention, 184. https://doi.org/10.1016/
j.aap.2023.106996 

Scarano, A., Rella Riccardi, M., Mauriello, F., 
D’Agostino, C., Pasquino, N., & Montella, A. (2023). 
Injury severity prediction of cyclist crashes using 
random forests and random parameters logit models. 
Accident Analysis and Prevention, 192, 107275. https://
doi.org/10.1016/j.aap.2023.107275 

Scholes, S., Wardlaw, M., Anciaes, P., Heydecker, B., & 
Mindell, J. S. (2018). Fatality rates associated with 
driving and cycling for all road users in Great Britain 
2005–2013. Journal of Transport & Health, 8, 
321–333. https://doi.org/10.1016/j.jth.2017.11.143 

Sener, I. N., Lee, K., Hudson, J. G., Martin, M., & Dai, B. 
(2019). The challenge of safe and active 
transportation: Macrolevel examination of pedestrian 
and bicycle crashes in the Austin District. Journal of 
Transportation Safety & Security, 13(5), 525–551. 
https://doi.org/10.1080/19439962.2019.1645778 

Shen, J., Wang, T., Zheng, C., & Yu, M. (2020). 
Determinants of Bicyclist Injury Severity Resulting 
from Crashes at Roundabouts, Crossroads, and T-
Junctions. Journal of Advanced Transportation. https://
doi.org/10.1155/2020/6513128 

Silvano, A. P., & Linder, A. (2017). Traffic safety for 
cyclists in roundabouts: geometry, traffic, and 
priority rules. VTI Notat, 35(31A). http://www.vti.se/
en/publications/ 

Sun, Z., Xing, Y., Wang, J., Gu, X., Lu, H., & Chen, Y. 
(2022a). Exploring injury severity of bicycle-motor 
vehicle crashes: A two-stage approach integrating 
latent class analysis and random parameter logit 
model. Journal of Transportation Safety & Security, 
14(11), 1838–1864. https://doi.org/10.1080/
19439962.2021.1971814 

Sun, Z., Xing, Y., Wang, J., Gu, X., Lu, H., & Chen, Y. 
(2022b). Exploring injury severity of vulnerable road 
user-involved crashes across seasons: A hybrid 
method integrating random parameter logit model 
and Bayesian network. Safety Science, 150, 105682. 
https://doi.org/10.1016/j.ssci.2022.105682 

Train, K. (2009). Discrete Choice Methods with Simulation 
(2nd ed.). Cambridge University Press. https://
doi.org/10.1017/CBO9780511805271 

Tuckel, P. (2021). Recent trends and demographics of 
pedestrians injured in collisions with cyclists. Journal 
of Safety Research, 76. https://doi.org/10.1016/
j.jsr.2020.12.010 

Uddin, M., & Huynh, N. (2020). Injury severity analysis 
of truck-involved crashes under different weather 
conditions. Accident Analysis and Prevention, 141, 
105529. https://doi.org/10.1016/j.aap.2020.105529 

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 18

https://doi.org/10.3390/e21040360
https://doi.org/10.3390/e21040360
https://doi.org/10.1111/1475-6773.12712
https://doi.org/10.1111/1475-6773.12712
https://doi.org/10.1007/s12239-019-0019-6
https://doi.org/10.1007/s12239-019-0019-6
https://doi.org/10.1016/j.jsr.2010.06.004
https://doi.org/10.1016/j.aap.2017.01.008
https://doi.org/10.1061/9780784483152.010
https://doi.org/10.1016/j.aap.2022.106858
https://doi.org/10.1016/j.aap.2022.106858
https://doi.org/10.3390/su142215471
https://doi.org/10.3390/su142215471
https://doi.org/10.3390/su14063188
https://doi.org/10.1080/17457300.2022.2116647
https://doi.org/10.1080/17457300.2022.2116647
https://doi.org/10.1016/j.ijtst.2019.10.002
https://doi.org/10.1016/j.aap.2017.11.007
https://doi.org/10.1016/j.aap.2017.11.007
https://doi.org/10.1016/j.jsr.2021.09.005
https://doi.org/10.1016/j.jsr.2021.09.005
https://doi.org/10.1016/j.aap.2023.106996
https://doi.org/10.1016/j.aap.2023.106996
https://doi.org/10.1016/j.aap.2023.107275
https://doi.org/10.1016/j.aap.2023.107275
https://doi.org/10.1016/j.jth.2017.11.143
https://doi.org/10.1080/19439962.2019.1645778
https://doi.org/10.1155/2020/6513128
https://doi.org/10.1155/2020/6513128
http://www.vti.se/en/publications/
http://www.vti.se/en/publications/
https://doi.org/10.1080/19439962.2021.1971814
https://doi.org/10.1080/19439962.2021.1971814
https://doi.org/10.1016/j.ssci.2022.105682
https://doi.org/10.1017/CBO9780511805271
https://doi.org/10.1017/CBO9780511805271
https://doi.org/10.1016/j.jsr.2020.12.010
https://doi.org/10.1016/j.jsr.2020.12.010
https://doi.org/10.1016/j.aap.2020.105529


van Haperen, W., Daniels, S., De Ceunynck, T., Saunier, 
N., Brijs, T., & Wets, G. (2018). Yielding behavior and 
traffic conflicts at cyclist crossing facilities on 
channelized right-turn lanes. Transportation Research 
Part F: Traffic Psychology and Behaviour, 55, 272–281. 
https://doi.org/10.1016/j.trf.2018.03.012 

Wahi, R. R., Haworth, N., Debnath, A., & King, M. 
(2018). Influence of Type of Traffic Control on Injury 
Severity in Bicycle–Motor Vehicle Crashes at 
Intersections. Transportation Research Record, 
2672(38), 199–209. https://doi.org/10.1177/
0361198118773576 

Wang, C., Lu, L., & Lu, J. (2015). Statistical analysis of 
bicyclists’ injury severity at unsignalized 
intersections. Traffic Injury Prevention, 16. https://
doi.org/10.1080/15389588.2014.969802 

Wang, Z., Neitzel, R., Zheng, W., Wang, D., Xue, X., & 
Jiang, G. (2021). Road safety situation of electric bike 
riders: a cross-sectional study in courier and take-out 
food delivery population. Traffic Injury Prevention, 22. 
https://doi.org/10.1080/15389588.2021.1895129 

Washington, S., Karlaftis, M. G., & Panagiotis 
Anastasopoulos, F. M. (2020). Statistical and 
Econometric Methods for Transportation Data Analysis 
(3rd ed.). ISBN 9780429244018. 

Xing, Y., Sun, Z., & Wang, D. (2020). Investigating 
influence factors on injury severity of electric and 
non-electric bicycle crashes in Beijing. 2020 IEEE 5th 
International Conference on Intelligent Transportation 
Engineering. https://doi.org/10.1109/
ICITE50838.2020.9231401 

Zhu, S. (2021). Analysis of the severity of vehicle-
bicycle crashes with data mining techniques. Journal 
of Safety Research, 76, 218–227. https://doi.org/
10.1016/j.jsr.2020.11.011 

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 19

https://doi.org/10.1016/j.trf.2018.03.012
https://doi.org/10.1177/0361198118773576
https://doi.org/10.1177/0361198118773576
https://doi.org/10.1080/15389588.2014.969802
https://doi.org/10.1080/15389588.2014.969802
https://doi.org/10.1080/15389588.2021.1895129
https://doi.org/10.1109/ICITE50838.2020.9231401
https://doi.org/10.1109/ICITE50838.2020.9231401
https://doi.org/10.1016/j.jsr.2020.11.011
https://doi.org/10.1016/j.jsr.2020.11.011


Appendix A   

Table A1. Descriptive statistics related to crash data (Part A)         

Variable Fatal Serious Slight Total 

N % N % N % N % 

Crash severity 429 0.59 14 890 20.58 57 044 78.83 72 363 100.00 

First road class 

A 213 0.29 5 865 8.10 23 298 32.20 29 376 40.60 

B 63 0.09 1 972 2.73 6 787 9.38 8 822 12.19 

C 29 0.04 930 1.29 3 889 5.37 4 848 6.70 

Motorway 1 0.00 1 0.00 3 0.00 5 0.01 

Missing 123 0.17 6 122 8.46 23 067 31.88 29 312 40.51 

Road type 

Single carriageway 341 0.47 11 694 16.16 43 581 60.23 55 616 76.86 

Dual carriageway 59 0.08 1 154 1.59 4 082 5.64 5 295 7.32 

One way street 8 0.01 378 0.52 1 784 2.47 2 170 3.00 

Roundabout 16 0.02 1 383 1.91 5 920 8.18 7 319 10.11 

Slip road 4 0.01 83 0.11 353 0.49 440 0.61 

Missing 1 0.00 198 0.27 1 324 1.83 1 523 2.10 

Speed limit (mph) 

20 24 0.03 1 600 2.21 7 830 10.82 9 454 13.06 

30 187 0.26 10 379 14.34 42 868 59.24 53 434 73.84 

40 46 0.06 1 028 1.42 3 076 4.25 4 150 5.73 

≥50 172 0.24 1 880 2.60 3 254 4.50 5 306 7.33 

Missing 0 0.00 3 0.00 16 0.02 19 0.03 

Junction detail 

Not at junction 240 0.33 4 858 6.71 15 212 21.02 20 310 28.07 

Crossroads 144 0.20 7 007 9.68 28 820 39.83 35 971 49.71 

Other junctions 22 0.03 1 073 1.48 4 629 6.40 5 724 7.91 

Roundabout 23 0.03 1 886 2.61 7 896 10.91 9 805 13.55 

Missing 0 0.00 66 0.09 487 0.67 553 0.76 

Junction control 

Not at junction or within 20 metres 240 0.33 4 858 6.71 15 212 21.02 20310 28.07 

Traffic lights 57 0.08 1 479 2.04 6374 8.81 7910 10.93 

Give way/Stop 132 0.18 8 310 11.48 33310 46.03 41752 57.70 

Missing 0 0.00 243 0.34 2148 2.97 2391 3.30 

Second road class 

A 33 0.05 1 424 1.97 6 354 8.78 7 811 10.79 

B 13 0.02 681 0.94 2 676 3.70 3 370 4.66 

C 12 0.02 581 0.80 2 741 3.79 3 334 4.61 

Motorway 1 0.00 21 0.03 56 0.08 78 0.11 

Missing 370 0.51 12 183 16.84 45 217 62.49 57 770 79.83 

Pedestrian crossing physical facilities 

No physical crossing facilities within 50 meters 335 0.46 11 419 15.78 40 788 56.37 52 542 72.61 

Central refuge 17 0.02 458 0.63 1 896 2.62 2 371 3.28 

Pedestrian phase at traffic signal junction 45 0.06 1 169 1.62 5 517 7.62 6 731 9.30 

Pelican, puffin, toucan or similar non junction pedestrian light Crossing 25 0.03 1 006 1.39 3 817 5.27 4 848 6.70 

Zebra 6 0.01 579 0.80 2 921 4.04 3 506 4.85 

Missing 1 0.00 259 0.36 2 105 2.91 2 365 3.27 
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Table A2. Descriptive statistics related to crash data (Part B)         

Variable Fatal Serious Slight Total 

N % N % N % N % 

Area 

Urban 200 0.28 1 1106 15.35 48 276 66.71 59 582 82.34 

Rural 229 0.32 3 784 5.23 8 768 12.12 12 781 17.66 

Day of week 

Weekday 306 0.42 11 489 15.88 46 367 64.08 58 162 80.38 

Weekend 123 0.17 3 401 4.70 10 677 14.75 14 201 19.62 

Lighting 

Daylight 317 0.44 11 647 16.10 4 4798 61.91 56 762 78.44 

Darkness 112 0.15 3 243 4.48 12 246 16.92 15 601 21.56 

Weather 

Clear 377 0.52 13 006 17.97 48 430 66.93 61 813 85.42 

Raining 33 0.05 1 158 1.60 5 022 6.94 6 213 8.59 

Other 9 0.01 272 0.38 1 254 1.73 1 535 2.12 

Missing 10 0.01 454 0.63 2 338 3.23 2 802 3.87 

Pavement 

Dry 334 0.46 11 923 16.48 45 387 62.72 57 644 79.66 

Wet/frozen 94 0.13 2 827 3.91 10 730 14.83 13 651 18.86 

Missing 1 0.00 140 0.19 927 1.28 1 068 1.48 

Number of bikes 

1 413 0.57 14 479 20.01 56 420 77.97 71 312 98.55 

>1 16 0.02 411 0.57 624 0.86 1 051 1.45 

Bike skidding and overturning 

No 357 0.49 12 599 17.41 48 250 66.68 61 206 84.58 

Yes 71 0.10 1 847 2.55 4 669 6.45 6 587 9.10 

Missing 1 0.00 444 0.61 4 125 5.70 4 570 6.32 

Bike leaving carriageway* 

No 343 0.47 13 711 18.95 51 551 71.24 65 605 90.66 

Nearside 63 0.09 622 0.86 1 304 1.80 1 989 2.75 

Offside 19 0.03 117 0.16 171 0.24 307 0.42 

Missing 2 0.00 426 0.59 3 961 5.47 4 389 6.07 

Bike hit off carriageway 

None 400 0.55 14 284 19.74 52 898 73.10 67 582 93.39 

Barrier/Pole/Tree/Wall 8 0.01 120 0.17 152 0.21 280 0.39 

Other 21 0.03 102 0.14 204 0.28 327 0.45 

Missing 0 0.00 384 0.53 3 790 5.24 4 174 5.77 

Bike 1st point of Impact 

No impact 42 0.06 1 121 1.55 2 798 3.87 3 961 5.47 

Back 105 0.15 1 457 2.01 6 449 8.91 8 011 11.07 

Front 157 0.22 7 724 10.67 27 800 38.42 35 681 49.31 

Nearside/Offside 124 0.17 4 263 5.89 17 303 23.91 21 690 29.97 

Missing 1 0.00 325 0.45 2 694 3.72 3 020 4.17 

Bike object hit in carriageway 

None 404 0.56 13 671 18.89 51 086 70.60 65 161 90.05 

Kerb 14 0.02 200 0.28 423 0.58 637 0.88 

Parked vehicle 6 0.01 461 0.64 1 290 1.78 1 757 2.43 

Other 3 0.00 120 0.17 161 0.22 284 0.39 

Missing 2 0.00 438 0.61 4 084 5.64 4 524 6.25 

Bike manoeuvre 

Going ahead 362 0.50 11 753 16.24 42 128 58.22 54 243 74.96 

Moving off 9 0.01 360 0.50 1 696 2.34 2 065 2.85 

Overtaking 7 0.01 633 0.87 2 462 3.40 3 102 4.29 

Turning left/right/U/Reversing 37 0.05 1 100 1.52 4 011 5.54 5 148 7.11 

Other 13 0.02 635 0.88 2 947 4.07 3 595 4.97 

Missing 1 0.00 409 0.57 3 800 5.25 4 210 5.82 

Abbreviations: na= not admissible 
*Bike Leaving Carriageway indicates whether the cyclist left the main roadway, either due to a single-bike crash or a collision with another vehicle. 

Mixed Logit Model and Classification Tree to Investigate Cyclists Crash Severity

Traffic Safety Research 21



Table A3. Descriptive statistics related to crash data (Part C)         

Variable Fatal Serious Slight Total 

N % N % N % N % 

Vehicle 2 skidding and overturning 

No 336 0.46 12 638 17.46 49 920 68.99 62 894 86.91 

Yes 21 0.03 241 0.33 520 0.72 782 1.08 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 1 0.00 380 0.53 3 754 5.19 4 135 5.71 

Vehicle 2 leaving carriageway 

No 330 0.46 12 665 17.50 50 066 69.19 63 061 87.15 

Nearside 12 0.02 150 0.21 388 0.54 550 0.76 

Offside 15 0.02 80 0.11 152 0.21 247 0.34 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 1 0.00 364 0.50 3 588 4.96 3 953 5.46 

Vehicle 2 hit off carriageway 

None 346 0.48 12 849 17.76 50 652 70.00 63 847 88.23 

Barrier/Pole/Tree/Wall 9 0.01 54 0.07 83 0.11 146 0.20 

Other 3 0.00 35 0.05 59 0.08 97 0.13 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 0 0.00 321 0.44 3 400 4.70 3 721 5.14 

Vehicle 2 1st point of impact 

No impact 10 0.01 860 1.19 2 680 3.70 3 550 4.91 

Back 13 0.02 807 1.12 3 202 4.42 4 022 5.56 

Front 246 0.34 6 251 8.64 25 419 35.13 31 916 44.11 

Nearside/Offside 89 0.12 5 087 7.03 20 569 28.42 25 745 35.58 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 0 0.00 254 0.35 2 324 3.21 2 578 3.56 

Vehicle 2 engine capacity 

≤1000 26 0.04 749 1.04 3 024 4.18 3 799 5.25 

1001-1500 54 0.07 2 809 3.88 11 413 15.77 14 276 19.73 

1501-2000 106 0.15 4 428 6.12 18 572 25.67 23 106 31.93 

2001-3000 38 0.05 1 359 1.88 5 301 7.33 6 698 9.26 

>3000 78 0.11 520 0.72 1 439 1.99 2 037 2.81 

Missing 50 0.07 3 165 4.37 14 140 19.54 17 355 23.98 

na 77 0.11 1 860 2.57 3 155 4.36 5 092 7.04 

Vehicle 2 propulsion code 

Petrol 113 0.16 4 979 6.88 20 294 28.04 25 386 35.08 

Heavy oil 189 0.26 4 626 6.39 18 015 24.90 22 830 31.55 

Hybrid electric 2 0.00 267 0.37 1 409 1.95 1 678 2.32 

Other 1 0.00 38 0.05 174 0.24 213 0.29 

na 77 0.11 1 860 2.57 3 155 4.36 5 092 7.04 

Missing 47 0.06 3 120 4.31 13 997 19.34 17 164 23.72 

Vehicle 2 age 

≤15 281 0.39 9 132 12.62 36 775 50.82 46 188 63.83 

>15 19 0.03 652 0.90 2 412 3.33 3 083 4.26 

Missing 47 0.06 3 077 4.25 13 725 18.97 16 849 23.28 

na 82 0.11 2 029 2.80 4 132 5.71 6 243 8.63 

Vehicle 2 type 

Car 242 0.33 11 903 16.45 50 346 69.57 62 491 86.36 

Two-wheelers 22 0.03 512 0.71 1 346 1.86 1 880 2.60 

Truck 83 0.11 656 0.91 1 947 2.69 2 686 3.71 

Other 11 0.02 129 0.18 400 0.55 540 0.75 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 0 0.00 59 0.08 155 0.21 214 0.30 

Vehicle 2 towing and articulation 

No 322 0.44 12 674 17.51 52 343 72.33 65 339 90.29 

Articulated vehicle 20 0.03 90 0.12 121 0.17 231 0.32 

Other 9 0.01 115 0.16 310 0.43 434 0.60 

na 77 0.11 1 860 2.57 3 155 4.36 5 092 7.04 

Missing 1 0.00 151 0.21 1 115 1.54 1 267 1.75 

Vehicle 2 manoeuvre 

Going ahead 260 0.36 5 099 7.05 17 646 24.39 23 005 31.79 

Moving off 9 0.01 1 078 1.49 5 254 7.26 6 341 8.76 

Overtaking 30 0.04 764 1.06 2 857 3.95 3 651 5.05 

Turning left/right/U/Reversing 37 0.05 4 235 5.85 18 099 25.01 22 371 30.91 
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Other 21 0.03 1 710 2.36 6 670 9.22 8 401 11.61 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 1 0.00 373 0.52 3 668 5.07 4 042 5.59 

Vehicle 2 object hit in carriageway 

None 346 0.48 127 66 17.64 50 082 69.21 63 194 87.33 

Kerb 8 0.01 42 0.06 112 0.15 162 0.22 

Parked vehicle 1 0.00 361 0.50 3 723 5.14 4 085 5.65 

Other 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

na 2 0.00 43 0.06 143 0.20 188 0.26 

Missing 1 0.00 47 0.06 134 0.19 182 0.25 

Abbreviations: na= not admissible, PTW= Powered two-wheeler 
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Table A4. Descriptive statistics related to crash data (Part D)         

Variable Fatal Serious Slight Total 

N % N % N % N % 

Cyclist journey purpose 

Commuting to/from work 55 0.08 2 724 3.76 11 340 15.67 14 119 19.51 

Journey as part of work 12 0.02 793 1.10 3 351 4.63 4 156 5.74 

To/from school 6 0.01 327 0.45 2 047 2.83 2 380 3.29 

Other 45 0.06 1 647 2.28 4 204 5.81 5 896 8.15 

Missing 311 0.43 9 399 12.99 36 102 49.89 45 812 63.31 

Cyclist gender 

Female 58 0.08 2 559 3.54 11 120 15.37 13 737 18.98 

Male 369 0.51 12 201 16.86 45 433 62.78 58 003 80.16 

Missing 2 0.00 130 0.18 491 0.68 623 0.86 

Cyclist age 

≤17 36 0.05 1 710 2.36 8 331 11.51 10 077 13.93 

18-24 28 0.04 1 432 1.98 6 825 9.43 8 285 11.45 

25-34 52 0.07 2 651 3.66 13 004 17.97 15 707 21.71 

35-44 51 0.07 2 616 3.62 10 050 13.89 12 717 17.57 

45-54 72 0.10 2 897 4.00 8 788 12.14 11 757 16.25 

55-64 74 0.10 1 679 2.32 4 228 5.84 5 981 8.27 

65-74 55 0.08 675 0.93 1 379 1.91 2 109 2.91 

≥75 36 0.05 278 0.38 462 0.64 776 1.07 

Missing 25 0.03 952 1.32 3 977 5.50 4 954 6.85 

Cyclist IMD 

Less deprived 198 0.27 6 291 8.69 21 527 29.75 28 016 38.72 

More deprived 154 0.21 6 637 9.17 28 020 38.72 34 811 48.11 

Missing 77 0.11 1 962 2.71 7 497 10.36 9 536 13.18 

Cyclist home area 

Urban 247 0.34 11 039 15.26 44 616 61.66 55 902 77.25 

Rural 69 0.10 1 065 1.47 2 585 3.57 3 719 5.14 

Small town 36 0.05 825 1.14 2 348 3.24 3 209 4.43 

Missing 77 0.11 1 961 2.71 7 495 10.36 9 533 13.17 

Driver 2 journey purpose 

Commuting to-from work/school 27 0.04 1 653 2.28 5 719 7.90 7 399 10.22 

Journey as part of work 122 0.17 2 193 3.03 7 676 10.61 9 991 13.81 

Other 37 0.05 1 254 1.73 3 417 4.72 4 708 6.51 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 172 0.24 8 159 11.28 37 382 51.66 45 713 63.17 

Driver 2 gender 

Female 55 0.08 3 452 4.77 14 031 19.39 17 538 24.24 

Male 287 0.40 7 766 10.73 29 765 41.13 37 818 52.26 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 16 0.02 2 041 2.82 10 398 14.37 12 455 17.21 

Driver 2 age 

≤17 3 0.00 94 0.13 315 0.44 412 0.57 

18-24 45 0.06 1 160 1.60 3 902 5.39 5 107 7.06 

25-34 75 0.10 2 330 3.22 8 852 12.23 11 257 15.56 

35-44 66 0.09 2 004 2.77 8 077 11.16 10 147 14.02 

45-54 61 0.08 2 118 2.93 8 075 11.16 10 254 14.17 

55-64 57 0.08 1 489 2.06 5 279 7.30 6 825 9.43 

65-74 16 0.02 779 1.08 2 837 3.92 3 632 5.02 

≥75 13 0.02 616 0.85 1 826 2.52 2 455 3.39 

na 76 0.11 1 817 2.51 3 850 5.32 5 743 7.94 

Missing 17 0.02 2 483 3.43 14 031 19.39 16 531 22.84 

Driver 2 IMD 

Less deprived 135 0.19 4 667 6.45 16 488 22.79 21 290 29.42 

More deprived 160 0.22 4 926 6.81 19 578 27.06 24 664 34.08 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 63 0.09 3 666 5.07 18 128 25.05 21 857 30.20 

Driver 2 home area 

Urban 203 0.28 7 785 10.76 30 728 42.46 38 716 53.50 

Rural 57 0.08 1 013 1.40 3 007 4.16 4 077 5.63 

Small town 35 0.05 796 1.10 2 333 3.22 3 164 4.37 

na 71 0.10 1 631 2.25 2 850 3.94 4 552 6.29 

Missing 63 0.09 3 665 5.06 18 126 25.05 21 854 30.20 

Abbreviations: na= not admissible 
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