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Abstract: This paper outlines a comprehensive approach to the evaluation of road safety policy. An
evaluation of road safety policy aims to estimate its effect on the number of traffic fatalities or the
number of injured road users. The following main stages of such a study are identified: (1) Analysis of
long-term trends for the purpose of developing hypotheses about the effects of road safety policy; (2)
Identification of variables describing road safety policy; (3) Identification of confounding variables; (4)
Exploratory analysis of statistical models; (5)Comparative analysis of statistical models; (6)Estimation
of policy effect and its uncertainty. The approach is illustrated using data for Sweden for 1981–2018.
Four variables describing road safety policy were assessed. Only one of them, the length of motorways
and 2+1 roads, had a consistent statistical relationship to the number of fatalities. Three models for
statistical analysis were compared: a negative binomial regression model, a multivariate ARIMA time-
series model, and a least squares linear regression model. The time-series model was clearly the best
of the models in terms of various criteria for model quality. According to this model, the number
of fatalities in 2018 was 27.6% lower than it would have been without the contribution of the policy
variable. It is likely that this estimate is too low. Only a single variable was used as an indicator of road
safety policy. The trend term (year count) probably captures part of road safety policy, like the effects
of safer cars associated with the renewal of the car fleet. The analyses show that road safety policy in
Sweden, as indicated by motorway length, has become more effective after the adoption of Vision Zero
than it was before the adoption of Vision Zero. In general, the history of road safety policy cannot be
reconstructed in sufficient detail to support an evaluation of which elements of it have been more or
less effective. It is, accordingly, not possible to identify any specific set of road safety measures that
should be given higher priority in order to make road safety policy more effective.
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1 Introduction

There is a great interest in evaluating the effects of
road safety policy. Policy makers in all countries want
to know how effective their policy is and how it can
be made more effective. There is also an interest in
learning what the contribution of road safety policy has
been to the decline in the number of traffic fatalities
seen in many highly motorised countries after about

1970.

Unfortunately, a rigorous scientific evaluation of the
effects of road safety policy is very difficult. The
difficulties include:

1. Verymany factors influence road safety and reliable
data are available only for a few of them. As an
example, data on drinking-and-driving in Norway
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are only available for 1981, 2006, 2009 and 2017.
Speed data are available after 2006, but only
sporadically before that year.

2. The factors for which data are available tend to
be highly correlated with each other and with
time. This makes it very difficult to estimate their
relationship to traffic fatalities precisely.

3. It is difficult to describe road safety policy
adequately. It consists of long-term ideals for safety
(like Vision Zero), quantified targets and a large
number of road safety measures. Detailed data on
the implementation of road safety measures are
often lacking. Thus, the number of roundabouts in
Norway is only known for 1980, 1984, 1995, 2005,
2011, and 2015.

4. There is no comparison group. While comparisons
between countries have been used in studies
evaluating road safety targets (Allsop et al., 2011),
it is difficult to find two countries that differ with
respect to road safety policy but are otherwise
similar in terms of factors influencing road safety.
Moreover, good data on the road safety policies
pursued in different countries are hard to find.

5. The reporting of traffic injury in official statistics is
incomplete and studies indicate that it has declined
over time (Lund, 2019; Bø, 1970; Lereim, 1984;
Hagen, 1993). Only the number of traffic fatalities
is believed to be completely, or nearly completely
reported in highly motorised countries.

Elvik & Høye (2022) discuss the use of multivariate
statistical analyses to evaluate the effects of road safety
policy and conclude that any such analyses are likely
to be affected both by omitted variable bias and by
collinearity. This refers to points 1 and 2 above. Yet,
the problem is multivariate and attempts to evaluate
road safety policy by means of multivariate analyses
should not be abandoned unless all such analyses can
be shown to be meaningless.

Elvik (2024) discusses how best to describe road safety
policy, preferably in numerical terms. He proposed a
road safety policy index consisting of ten items. These
ten items by no means include all road safety measures
that were implemented in the period covered by the
study; it is simply those for which data happen to be
available. No minor improvements, like guard rails,
building roundabouts or installing road lighting were
included. On the other hand, the use of many road
safety measures is highly correlated and including very
highly correlated items in an index may be redundant

and amount to double counting.

Since every country has a unique road safety policy,
analyses generally use annual data for a single
country as the unit of observation, although some
studies (Fridstrøm, 1999) have used monthly data
for the counties of a country. Usually, however,
annual data for a whole country are more easily
available than data at lower levels of aggregation.
An effect of something, like road safety policy, can
be defined as changes produced by the policy that
would not otherwise have happened. But how can
the counterfactual, i.e. what would otherwise have
happened be defined in a multivariate analysis? Elvik
& Nævestad (2023) suggest one possibility, but relying
on it only produces what may be termed a ’hypothetical′
counterfactual, not an actual one, like in a randomised
controlled trial.

This paper will try to discuss all the problems of
evaluating road safety policy and indicate solutions
to them. It is recognised that ideal solutions cannot
be found. The paper therefore focuses on the need
for exploratory analyses to support the formulation of
hypotheses about the effects of road safety policy and
on the need for explicitly justifying all analytic choices
made with respect to, for example, the definition of
variables and which variables to include in multivariate
analyses. The following stages have been identified in
an evaluation of road safety policy:

1. Description of trends in road safety
2. Identification of variables describing policy
3. Identification of confounding variables
4. Exploratory model development
5. Comparison of statistical models for analysis
6. Estimation of policy effect and its uncertainty.

2 Describing trends

The main reason for starting by describing trends over
time is to get ideas for hypotheses about the effects of
road safety policy. Data for Sweden for 1968–2022will
be used to illustrate this step of analysis.

Figure 1 shows the number of traffic fatalities in
Sweden from 1968 to 2022. 1968 was the first full year
after the change to driving on the right. There is a clear
downward trend. In 1970, there were 1307 fatalities. In
2020, the number had been reduced to 204, a reduction
84.4%. The downward trend has, however, been quite
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irregular. There have been periods in which there was
no decline in the number of fatalities. These periods are
indicated by ellipses in Figure 1. In the periods when
there was decline, the rate of decline varied. There was
a very sharp decline in the last half of the 1970s. In
more recent times, the decline appears to be less sharp,
but in percentage terms this may not be the case.

To reduce the contribution of random variation, four
year running averages were computed. The first is the
average of 1968, 1969, 1970 and 1971 and is denoted as
1971 in Figure 2. It is seen that the data points scatter
less widely, but the periods of stagnating decline can
still be clearly identified. The periods of stagnation
have been labelled as ’progress not sustained′. Each
period starts when a declining trend stopped and ends
the first year when the number of fatalities was lower
than in the first year of the period of stagnation. Thus
in 1985 the four-year average number of fatalities
was higher than in 1984 (786.5 versus 780.5). The
number did not go below 780.5 until 1993, when it was
727. This marked the end of the period of stagnation.
However, the turning point indicating that the period of
stagnation was coming to an end started earlier. The
four-year average number of fatalities was lower in
1990 than in 1989 and the decline continued until 1998.

Three main periods have been identified in Figure 2:
before Vision Zero, a transition period, and after Vision
Zero. Vision Zero was adopted in October 1997, and
the year 1997 is classified as before Vision Zero. 1998
is the first year in the after Vision Zero period.

The transition period comprises all four-year periods
that include the year 1998. The mean annual change
in the number of fatalities has been estimated for
four periods: 1971–1984, 1984–1997, 1998–2010 and
2010–2022. The first two of these periods were before
the adoption of Vision Zero, the last two after. It is
seen that there was decline in the number of fatalities
in all four periods. The decline was slower in 1984–
1997 than in 1971–1984. The mean annual decline
was 3.65% in 1971–1984. This was reduced to 2.52%
during 1984–1997. In the first period after Vision
Zero, annual mean decline in the number of fatalities
increased again to 3.11%. It further increased to 4.48%
in the most recent period.

If this variation can be linked a corresponding variation
in the effects of road safety policy, this will strengthen
a claim that road safety policy may explain variation
in the rate of decline in traffic fatalities in Sweden.
Finding such a dose-response pattern is often regarded

as an indication, although by itself not a proof, of
a causal relationship. This supports the following
hypotheses:

• H1: Road safety policy in Sweden became more
effective after the adoption of Vision Zero than it
was before the adoption of Vision Zero
• H2: Road safety policy has gradually become more
effective in the period after the adoption of Vision
Zero. It was least effective immediately after the
adoption of Vision Zero and became more effective
until about 2015. After that it became less effective.

A road safety policy can become more effective by
using more effective road safety measures, or by
increasing the use of effective road safety measures. To
believe that road safety policy can be effective, it must
be shown that it consists of road safety measures that
are known to be effective.

To test these hypotheses, it is necessary to describe road
safety policy in numerical terms in order to determine
how it has varied over time. Such a description of road
safety policy requires data about the use of effective
road safety measures on an annual basis. There should
be no gaps in the data, and they should ideally include as
many road safety measures as possible. Hypotheses 1
and 2 are supported if data show that road safety policy
becamemore effective after the adoption ofVision Zero
than it was before the adoption of Vision Zero.

3 Variables describing road safety policy

In general, very limited data are available on variables
describing road safety policy. This applies especially to
detailed data about road user behaviour. For Sweden,
complete data for 1981–2018 have been found for the
length of motorways and 2+1 roads with a median
barrier and for the number of random breath tests.
Figure 3 shows the length of motorways and 2+1 roads
in Sweden from 1981 to 2018. It is seen that the length
has grown more rapidly after about 2000 than before
that year.

Figure 4 shows the number of random breath tests
per million vehicle kilometers of travel from 1981 to
2018. The number of breath tests per million vehicle
kilometers of travel changes in a wavelike pattern.
There was an increase until about 1995, then a decline
until about 2000. Then there was an increase again
until about 2010, followed by a decline. A similar
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Figure 1 Traffic fatalities in Sweden 1968–2022

Figure 2 Four year running average number of traffic fatalities in Sweden 1971–2022
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Figure 3 Length of motorways and 2+1 roads in Sweden 1981–2018

cyclical pattern has been found for citations for traffic
offenses per million vehicle kilometers of travel in
Norway (Elvik & Nævestad, 2023).

Both these variables are numerical and continuous
and change values from year to year. This makes
them suitable for inclusion in a multivariate statistical
analysis. However, they do not fully describe road
safety policy. Road safety policy consists of many
other road safety measures in addition to these two.
Moreover, the long-term ideals, principles and targets
of road safety policy have changed over time. The
most important change was the adoption of Vision Zero
in late 1997. Another change was the adoption of
a quantified target for reducing the number of traffic
fatalities. A target was set in 1996 of reducing the
number of fatalities from 540 in 1994 to 270 in 2007.
After 2007, a new target of 220 fatalities was set for
2020.

Vision Zero can be represented as a dummy variable,
taking the value of 0 for 1981–1997 and 1 for 1998–
2018. The quantified targets for 2007 and 2020 are
included in the form of the mean annual percentage
reduction of the number of fatalities aimed for: 5.6%
per year for the first target (1996–2007) and 5.2% per
year for the second target (2008–2020). The targeted
reduction is stated as a positive number. Hence, the
following four variables describe road safety policy:

1. Length in kilometers of motorways and 2+1 roads
with a median barrier

2. Number of random breath tests per million vehicle
kilometers of travel

3. Dummy for Vision Zero
4. Targeted annual percentage reduction in the number

of fatalities.

4 Confounding variables

The number of traffic fatalities is influenced by very
many variables and road safety policy may not be the
most important (Fridstrøm, 1999). In any analysis of
road safety policy, one should try to control for as many
confounding variables as possible.

In this study, a year is the unit of observation. There
are 38 years in total. The number of variables that
can be included in a study with such a small sample
is very limited. Based on previous research (Elvik,
2019; Brüde, 1995;Wegman et al., 2017), the following
confounding variables have been included:

1. Time (as a year count, with 1981 = 1 and 2018 = 38
2. Million vehicle kilometers of travel
3. Unemployment (percent of labour force; annual

mean values.
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Figure 4 Random breath tests per million vehicle kilometres of travel 1981–2018

Table 1 lists the data for all variables included in the
study. The next stage of the study is an exploratory
analysis for the purpose of developing the best model
for estimating the effects of the policy variables and the
confounding variables.

5 Exploratory model development

The variables of principal interest in the study are the
policy variables. The first model developed therefore
included only these variables. The results are reported
in Table 2.

All models were fitted by means of negative binomial
regression. As part of the comparative analysis of
different statistical models, the negative binomial
regression models will later be compared to a
multivariate time-series model and a linear regression
model based on annual differences in the value of the
variables listed in Table 1.

Model 1 included only motorway kilometers and
random breath tests. As expected, both variables had a
negative coefficient, which was statistically significant
for both variables. In model 2, Vision Zero and the
quantified road safety target were added. All variables
were expected to have negative coefficients, but Vision
Zero did not. All coefficients were statistically
significant at 5% level of significance.

To assess how robust estimated coefficients are
with respect to the variables included in the models,
attenuation and change of sign were estimated.
Attenuation refers to a change in the estimated value
of a coefficient. Thus, the coefficient for motorway
kilometers was reduced from -0.0002186 in model 1 to
-0.0002118 in model 2. This is a reduction of 3.1%.
The coefficient was negative in both models; hence,
the sign did not change.

The purpose of comparing models including different
variables is to assess how stable the coefficients for
the policy variables are across different models. A
lack of stability, either in terms of large changes
in the value of coefficients, change in the sign of
coefficients, or change the precision of coefficient
estimates suggest that the variables cannot be given
a causal interpretation (Hauer, 2010). Only policy
variables that remain stable across model specification
will be included in the final model.

Models 1 and 2 did not include any confounding
variables. In model 3, year was included. This was
associated with a further attenuation in the coefficients
for the policy variables, except for Vision Zero.
Attenuation is always assessed by comparing the
estimated coefficient in model n with the estimated
coefficient in the first model including a variable. The
rather large attenuation of the coefficients for the policy
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Table 1 Data for all variables

Year Killed Vehicle km
(million)

Unemploymen
(percent)

Motorway
kilometers

Random breath
tests per million
vehicle km

Vision Zero Target

1981 784 51231 2.5 820 9.19 0 0
1982 758 51863 3.2 845 9.63 0 0
1983 779 52709 3.7 870 10.46 0 0
1984 801 53222 3.3 875 11.47 0 0
1985 808 54888 2.9 898 11.13 0 0
1986 844 55291 2.7 901 12.03 0 0
1987 787 58639 2.2 901 11.66 0 0
1988 813 61763 1.8 901 10.37 0 0
1989 904 65052 1.6 926 11.87 0 0
1990 772 64310 1.7 929 11.96 0 0
1991 745 64867 3.1 939 14.35 0 0
1992 759 65537 5.6 968 16.26 0 0
1993 632 64135 9.1 1005 25.14 0 0
1994 545 64905 9.4 1061 27.36 0 0
1995 533 66138 8.8 1141 27.96 0 0
1996 509 66469 9.6 1262 19.99 0 5.6
1997 507 66668 9.9 1360 17.19 0 5.6
1998 492 67400 8.2 1428 15.07 1 5.6
1999 536 69558 6.7 1510 15.31 1 5.6
2000 565 70601 5.6 1670 15.71 1 5.6
2001 554 71590 5.8 1960 15.94 1 5.6
2002 532 73952 6.0 2210 17.31 1 5.6
2003 529 73860 6.6 2530 18.35 1 5.6
2004 480 74599 7.4 2730 20.54 1 5.6
2005 440 75196 7.6 3000 23.41 1 5.6
2006 445 75347 7.0 3250 29.78 1 5.6
2007 471 77262 6.1 3580 32.54 1 5.6
2008 397 77325 6.2 3810 34.14 1 5.2
2009 358 76717 8.3 4000 33.84 1 5.2
2010 266 76738 8.6 4270 35.17 1 5.2
2011 319 77786 7.8 4460 35.47 1 5.2
2012 285 77230 8.0 4580 31.82 1 5.2
2013 260 77702 8.0 4680 28.93 1 5.2
2014 270 79153 7.9 4840 25.41 1 5.2
2015 259 80687 7.4 4950 17.68 1 5.2
2016 270 82630 6.9 5020 14.92 1 5.2
2017 252 83871 5.9 5090 14.22 1 5.2
2018 324 84528 5.5 5210 14.31 1 5.2
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Table 2 Coefficients of negative binomial models

Terms Model1 Model 2 Model 3 Model 4 Model 5 Model 6
Year -.0150971∗

(.0066554)
[.023]

-.0380767
(.0165306)

[0.021]

-.0294317
(.01497)
[.049]

-.0379353
(.013318)

[.004]
Vehicle km .0000253

(.0000106)
[.017]

.0000214
(.0000101)

[.035]

.000027
(.00000909)

[.003]
Unemployment -.0388554

(.0123522)
[.002]

-.042112
(.0109861)

[.000]

-.033429
(.0081354)

[.000]
Motorway km -.0002186

(.0000161)
[.000]

-.0002118
(.0000309)

[.000]

-.0001139
(.0000374)

[.000]

-.0001128
(.0000486)

[.020]

-.0001331
(.000463)

[.004]

-.0001048
(.0000399)

[.009]
Random breath tests (RBT) -.0064484

(.0030379)
[.034]

-.0054718
(.0027232)

[.044]

-.0041404
(.0026197)

[.114]

.0025766
(.0024807)

[.299]

.002723
(.0023606)

[.249]
Vision Zero .1975877

(.0936604)
[.035]

.2034733
(.0877135)

[.020]

.0322762
(.0626969)

[.607]
Quantified target -.0490476

(.0147353)
[.001]

-.0316731
(.0157483)

[.044]

.0044807
(.0108937

[.681]
Dispersion parameter .0137394 .0100829 .0086226 .0020626 .0022084 .0023504
Elvik index .8876 .9139 .9245 .9718 .9707 .9697
Attenuation, motorways -3.1% -47.9% -48.4% -39.1% -52.1%
Change of sign, motorways No No No No No
Attenuation, RBT -15.1% -35.8% n/d∗∗ n/d
Change of sign, RBT No No Yes Yes
Attenuation, Vision Zero 3.0% -83.7%
Change of sign, Vision Zero No No
Attenuation, quantified
target

-35.4% n/d

Change of sign, quantified
target

No Yes

∗ coefficient (standard error) [P-value]
∗∗ n/d: not defined

variables show that they are not robust with respect
to control for confounding variables, i.e. the ‘crude′
coefficients estimated for these variables in the models
not including any confounding variables overestimate
the effects of the policy variables.

Model 4 includes all confounding variables and all
policy variables. Two of the policy variables change
sign from negative to positive: random breath testing
and quantified target. For three of the policy variables,
the coefficient is no longer statistically significant. It
remains significant for motorway kilometers. In model
5, two of the policy variables were omitted. The

coefficient for motorway kilometers remains negative.
The coefficient for random breath testing is positive,
which is implausible. However, the coefficient is far
from statistical significance.

Model 6 is the final model. It includes three
confounding variables and just one policy variable,
motorway kilometers. The other three policy variables
were not included as no reliable estimates of their
effects were found in the exploratory analysis. The
coefficients either changed sign in different models
and/or were not statistically significant. This instability
suggests that the variables cannot be interpreted as

8



Elvik | Traffic Safety Research vol. 6 (2024) e000051

causal factors (Hauer, 2010). As can be seen by
comparing the Elvik index of goodness of fit, the loss
of explanatory value by omitting three of the variables
included in model 4 is minimal. Model 4 explained
97.18% of the systematic variation in the number of
killed road users; model 6 explained 96.97% of the
systematic variation in the number of killed road users.
The loss of explanatory value is only 0.19%.

6 Comparative analysis of statistical models

As noted above, several statistical techniques can be
used to analyse data for the purpose of estimating the
contribution of road safety policy to changes in the
number of traffic fatalities. It is good practice to employ
more than one technique of analysis and to compare the
results obtained using different techniques of analysis.
A general problem in the analysis of time series data, is
that the variables tend to be highly correlated. Table 3
shows the correlations between the variables.

It is seen that when annual values are used for all
variables, the correlations between them are very high.
If variables are redefined as annual differences, e.g.
rather than entering the number of killed road users as
784 in 1981 and 758 in 1982, it is entered as -26 in
1982, the correlations become much weaker, as shown
in panel B of Table 3.

Three models of analysis have been compared:

1. Negative binomial regression model (model 6) in
Table 2

2. A multivariate ARIMA time series model,
including the same variables as the negative
binomial regression model

3. A least squares linear regression model based on
annual differences in the values of the variables,
including the same variables as models 1 and 2.

The performance of the models is compared in terms of
the following statistics:

1. Sign and statistical significance of coefficients
2. Bias in predicted values
3. Overall goodness of fit
4. Mean absolute percentage prediction error
5. Autocorrelation of residual terms
6. Cumulative residuals plot.

There has been a decline over time in the number of
traffic fatalities. Based on previous studies (Elvik,
2019) the following signs are expected for the
coefficients: year count: negative; vehicle kilometers
of travel: positive; unemployment: negative;
motorway kilometers: negative.

If model predictions are unbiased, the sum of predicted
values should equal the sum of recorded values. The
sum of fatalities for 1981–2018 in Sweden was 20 584.
Overall goodness-of-fit is estimated by means of the
Elvik index for the negative binomial regression model
and by means of the squared multiple correlation
coefficient (R2) for the linear regression model. For
the time-series model, a modified version of the Elvik
index is used as measure of goodness-of-fit. The mean
absolute percentage prediction error is the mean value
of percentage prediction errors, when all these errors
are entered as a positive number. Autocorrelation of
residual terms is assessed at lag one, i.e. by correlating
residuals at lag zero with those at lag one. Two data
points (the first and last) are lost when estimating
autocorrelation at lag one. Finally, cumulative residual
plots (Hauer & Bamfo, 1997) have been developed to
compare the models.

Table 4 summarises the comparison of the models. The
estimates based on the negative binomial regression
model and the multivariate time-series model are very
similar. However, the time-series model fits the data
better and has no autocorrelation of the residual terms.
Cumulative residual plots for the twomodels are shown
in Figure 5.

It is seen that the cureplot for the time-series model
displays less variation than the cureplot for the negative
binomial regression model. It strays outside the dotted
line indicating plus or minus two standard errors,
whereas the plot for the time-series model always stays
within plus or minus two standard errors.

As far as the model based on annual differences is
concerned, the results made no sense. Only one of
four coefficients was statistically significant, and the
entire cureplot was located outside the dashed lines
indicating two standard errors. The model explained
only 31.7% of the variance. The clear conclusion from
the comparison of models is that the time-series model
is the best model.
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Table 3 Correlations (Pearson’s r) between variables

Year count Killed Vehicle km Unemployment
Panel A: Annual values for all variables

Killed -.9506
Vehicle km .9790 -.8926
Unemployment .6022 -.7474 .5672
Motorway km .9488 -.9071 .8889 .4476

Panel B: differences between annual values for all variables
Killed .0245
Vehicle km -.1245 .5231
Unemployment -.1882 -.4483 -.5233
Motorway km .5823 -.0402 -.1556 -0.0603

Table 4 Comparison of models

Items Negative binomial Time series Annual difference
Coefficient for year count Negative; significant Negative, significant Positive; not significant
Coefficient for vehicle km Positive; significant Positive; significant Positive; significant
Coefficient for
unemployment

Negative; significant Negative; significant Negative; not significant

Coefficient for motorway
km

Negative; significant Negative; not significant Negative; not significant

Predicted values/actual
values

1.002 1.000 1.000

Goodness-of-fit 0.9697 0.9731 0.3168
Mean absolute prediction
error

5.77 4.57 8.37

Autocorrelation of residuals
(lag 1)

0.304 0.029 0.687

Figure 5 Cumulative residuals plots (cureplots) for negative binomial regression model and time series model
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7 Estimating the effect of road safety policy

There are two equivalent ways of estimating the effect
of road safety policy on the number of killed road users
in Sweden during 1981–2018. The first method is to
estimate a hypothetical, counterfactual number of killed
road users by omitting the policy variable (motorway
kilometers) from the predictive equation but keeping
the other variables with unchanged (compared to the
full model) values of the coefficients. The second
method is to directly estimate the effect of the policy
variable by multiplying the coefficient with the value
of the variable each year. These two methods produce
identical results.

Based on the time-series model, the number of traffic
fatalities in Sweden in 2018 was 27.6% lower than it
would have been without the growth in motorways and
2+1 roads. Obviously, this is an imperfect indicator
for road safety policy, and it is very likely that part of
the effect of road safety policy is captured by the trend
term (year count). This will probably include the effects
of cars becoming gradually safer. However, renewal
of the car fleet is a slow process, and it takes place
at a rather constant rate. This means that it is almost
perfectly correlated with time and therefore difficult to
estimate reliably.

8 Uncertainty of policy effect

The estimated contribution of road safety policy to
reducing the number of killed road users in Sweden
is highly uncertain. Uncertainty can be estimated by
applying the lower and upper 95% confidence limit
values of the coefficient for the policy variable. For
the final year of the study, it is then found that:

The best estimate of the effect of policy is a reduction of
the number killed road users of 27.6%. The lower 95%
confidence limit is a reduction of 54.2% and the upper
95% confidence limit is an increase of 72.1%. Thus,
the estimated reduction is not statistically significant.
It is nevertheless far more likely that road safety policy
has contributed to reducing the number of fatalities than
that it has not contributed to this. This can be seen from
Figure 6.

The probability that policy has reduced the number of
fatalities is 0.825; the probability that it has not is 0.175.
It may be noted that the negative binomial regression
model produced larger estimates of policy effect. The
best estimate for the year 2018 is a 42.1% reduction of
fatalities, with a 95% confidence interval from 61.5%

reduction to 12.9% reduction.

With respect to the hypotheses proposed in section 2,
the following results were obtained from the time-series
model: The simple mean annual reduction of fatalities,
attributed to the policy indicator, during 1981–1997
was 0.2%. During 1998–2018, it was 1.3%. This
supports hypothesis 1. The period after Vision Zero has
been divided into 1998–2004, 2005–2014 and 2015–
2018.

During 1998–2004, road safety policy contributed to
a mean annual decline in fatalities of 0.8%. This
increased to 2.2% during 2005–2014, but slowed down
to a complete halt during 2015–2018, with an estimated
annual increase of 0.2% in the number of fatalities. This
pattern supports hypothesis 2.

9 Discussion

A rigorous evaluation of the effects of road safety
policy is impossible, and the analyses reported in this
paper confirm this. Two main difficulties continue to
resist a good solution. These are:

1. It is not possible to define a variable, or set of
variables, which adequately describes road safety
policy.

2. Any variable, or set of variables, describing road
safety policy is very highly correlated with time and
with other slowly changing variables, like vehicle
kilometers of travel.

In an ideal world, there would be a complete
historical record of when all road safety measures were
implemented. It would be possible to reconstruct, for
example, exactly how many roundabouts were built
each year in Sweden after 1981 and the traffic volume
in these roundabouts. In theory, these data may exist
in the national road data bank, but most likely not in
an easily readable form. One would have to identify
each roundabout and record the data for it in a separate
file. However, there would almost certainly be gaps in
the data. Some roundabouts would not have data about
construction year. Some would not have complete data
on traffic volume. Some would have been modified
one or more times after initial construction.

Besides, even in the unlikely case that the road data
bank is complete and has no erroneous or missing
information, it is not a statistical database that easily
lends itself to tabulating the data in summary form,

11



Elvik | Traffic Safety Research vol. 6 (2024) e000051

Figure 6 Probability distribution for effect of road safety policy in Sweden 1981–2018 (time series model)

i.e. as total, annual numbers for of all of Sweden.
Moreover, somewhat arbitrary decisions would have to
be made with respect to what to include and count as
road safety measures. Should, for example, resurfacing
of roads, provided data existed about it, be included?
Should replacing worn traffic signs be included? Or
are these measures too trivial to be included?

Reconstructing historically the implementation of all
road safety measures would be draconian task if the
data existed. However, the data do not exist, and we are
thus spared from the draconian task. Long time series
of data exist only for very few road safety measures.
In Sweden this includes the length of motorways and
2+1 roads, the number of random breath tests, the
number of speed cameras, and seat belt wearing. Major
changes in speed limits may also be reconstructed.
The dates of important new legislation, like mandatory
daytime running lights, are known. Apart from this,
we essentially know nothing about the history of road
safety measures and hence nothing about the history of
road safety policy.

Yet, even if we try to include and code as numerical
variables what little we do know, these variables will
be highly correlated with other variables we want to
include—various confounding variables we want to
control for. Four variables describing road safety policy
were tested in this study. Only one of them was

found to have a statistically consistent relationship to
the number of fatalities: the length of motorways and
2+1 roads. The other three variables either switched
sign depending on which other variables were included
in the models or became statistically insignificant.
This lack of consistency does not support a causal
interpretation of these variables. Besides, with data for
only 38 years, it is not possible to include more than
about 4 independent variables in a statistical analysis.

The final models included just four independent
variables, but these were highly correlated. The
multivariate time-series model was clearly the best of
the three statistical models that were compared. The
estimate of the effect of road safety policy in 2018
based on this model, a fatality reduction of 27.6% is
implausibly low. A trend line fitted to the number of
fatalities from 1981 to 2018 shows a total reduction
of 72.6%. If the estimated contribution from policy is
correct, it explains only 38% of the decline. This is
probably too low, and contributions from, for example,
safer cars are embedded in the trend term (the year
count variable). In short, the main result of the study is
probably misleading and nothing can be learned from it
with respect to future development of a more effective
road safety policy. We are, in other words, not in a
position where we can learn anything from the history
of road safety policy, at least not based on the approach
adopted in this paper.
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As a sensitivity analysis, a simple policy index was
developed by adding the values of motorway length and
random breath tests per million vehicle kilometers of
travel. The value of the index was set equal to 100 for
1981. It grew irregularly, reaching a maximum value
of 465 in 2011, then declining to 387 in 2016, before
increasing again to 395 in 2018. The results of a time-
series analysis using this index were similar to those
obtained using only motorway length. Road safety
policy became more effective after adopting Vision
Zero and was at its most effective until about 2011.

One possible approach to strengthen the basis for causal
inferences would be to do separate analyses for rural
and urban areas. One would then expect, for example,
the contribution of motorways to reducing fatalities to
be larger in rural areas than in urban areas. Such a
finding would support what Fridstrøm (2015) calls the
‘casualty subset test′: A road safety measure should
have a larger effect within a clearly designated target
group than outside the target group. On the other
hand, it might be the case that fatalities have been
reduced just as much, or more, in urban areas than
in rural areas—not as a result of new motorways,
but perhaps as a result of traffic calming and more
roundabouts. However, as long as the available data
on traffic calming and roundabouts are too incomplete
to include in a statistical analysis, the decline would,
erroneously, be attributed to new motorways. Even
more absurd examples can easily be found. In one
model developed for Norway (unpublished, as part of
exploratory analysis), increased seat belt wearing was
found to be associated with fewer pedestrian and cyclist
fatalities. The two variables simply happened to be
highly correlated in time, but there clearly is no causal
relationship between them.

It may perhaps be more fruitful to combine a detailed
study of trends, and shifts in them, with historical data
on specific decisions and implementation of specific
road safety measures. The trends shown in Figure 2
clearly show that there have been periods both of fast
and slow decline in the number of fatalities, as well
periods of increase. Can these variations be linked
to changes in road safety policy? In answering this
question, a statistical analysis based on a single variable
indicating road safety policy will be inadequate and
not capture the dynamics of policy. It is, for example,
interesting to note that Vision Zero was adopted during
a period when the decline in the number of fatalities
appeared to have stopped. Vision Zero quickly gained
broad political support as an attractive idea and renewed

political interest in road safety. Changes like this are
difficult to capture in a statistical model. Yet, it did
take some years before a rapid decline in the number
of traffic fatalities in Sweden started. Clearly, part
of the large declines in 2008, 2009 and 2010 were
caused by the economic recession in those years. But
2008 was the year when speed limits were lowered on
many roads in Sweden. An evaluation (Vadeby & Åsa
Forsman, 2018) estimated that the changes in speed
limits reduced the number of fatalities by 17 per year.

Thus, a hybrid analysis, a mixture of a detailed
examination trends and changes in them, combined
with data about specific policy decisions may perhaps
be the most informative approach for evaluating the
effects of road safety policy.

10 Conclusions

The main conclusions of the study presented in this
paper can be summarised as follows:

1. A time-series analysis indicates that in 2018, the
number of traffic fatalities in Sweden was about
28% lower than it would have been if no road safety
policy had been implemented.

2. Road safety policy is indicated by a single variable,
the length of motorways and 2+1 roads. This
indicator is likely not to capture all effects of road
safety policy.

3. The true effect of road safety measures
implemented during 1981–2018 is most likely
greater than indicated by the analysis reported in
this paper.
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