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Abstract: This study introduces a novel surrogate safety indicator, the ‘effective radius’, and a dynamic
tracking methodology for assessing the safety of micromobility (MM) users on isolated bike lane
curves, with a focus on geometric characteristics. The methodology involves six main pillars, including
site selection, geometric data collection, video recording, speed and position extraction, visualization,
and analysis. Naturalistic video data of bike lane users are captured to observe user behavior, and
specific points along the curve centerline are identified for monitoring lateral position and speed on
a selected curve site in Valencia, Spain. The analysis centers on a bidirectional bike lane featuring
a sharp horizontal curve, incorporating the effective radius criteria to evaluate MM users’ responses
to geometry and environmental conditions. Findings reveal significant variation in effective radius,
especially during left turns, primarily due to the geometry factor and the lane’s positioning outside
the curve. Lateral displacement heat maps indicate that left-turn users often have higher tendencies
to violate dedicated lanes, posing collision risks. The speed analysis underscores potential conflicts
and reduced handling capabilities for users breaching lane boundaries. The imperative need for well-
informed design and safety measures in micromobility infrastructure is emphasized, considering the
impact of geometric factors on user behavior and safety.
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1 Introduction

1.1 Micromobility safety: navigating current
risks

European and Chinese cities increasingly promote
micromobility, particularly cycling, as a key daily
transportation mode (Uijtdewilligen et al., 2023).
Despite efforts to enhance cycling-walking-public
transport connectivity, recent crash data reveals

a decline in the safety of these vulnerable users.
Micromobility is classified into four types (A, B, C, D),
based on their maximum speed, weight, and whether
they are powered or unpowered. The micromobility
users studied in this research include unpowered
bicycles and powered e-scooters that belong to class
A and weigh below 35 kg (Hossein Sabbaghian
et al., 2023). According to the Spanish General
Directorate of Traffic (DGT), out of 305 689 crashes
that occurred over five years since 2018, 29 913
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involved micromobility users, among which e-
scooter-related crashes surged (Sanjurjo-De-No et al.,
2023). Intersection areas pose heightened side-impact
collisions risks for both bicycles and e-scooters,
especially during motor vehicle turns across bike
lanes (Pérez-Zuriaga et al., 2023). The German
In-Depth Accident Study (GIDAS) also reports a
steady increase in bicycle accidents in Germany
since 1999 (GIDAS, n/d). In the Netherlands, with
a substantial 28% bike mode share, over 63% of
serious injuries since 2021 occurred without motor
vehicle involvement (GIDAS, n/d; Aarts et al., 2022;
SWOV, 2023a; Bos et al., 2022). In 2022, cyclists
accounted for nearly 40% of road deaths in the
Netherlands with 290 cases (SWOV, 2024). While
the significant cycling mode share is a contributing
factor, other influences on the rise in road deaths
need assessment (Swarttouw, 2023). In response,
Dutch authorities have regulated speed in build-up
areas to 30 km/h, aiming to reduce the intensity of
cyclist-car collisions. Nonetheless, addressing non-
motor vehicle incidents is crucial for minimizing
serious injuries among Micromobility users, as studies
indicate a significant number of injuries result from
falls and conflicts among vulnerable users (Reijne
et al., 2022; IenW, 2018; DGT, n/d; Haarbrink,
2021). Additionally, many non-hospitalized incidents
go unreported, concealing the potential contributing
factors. The Road Safety Strategic Plan in Europe, with
the goal of achieving zero fatalities or serious injuries
in traffic accidents by 2050, emphasizes prioritizing
safety in road designs from the outset and taking into
account behavioral studies (Reijne et al., 2022; IenW,
2018; DGT, n/d; Haarbrink, 2021).

1.2 Behavioral patterns and safety assessment
measures

Maneuvering and behavioral patterns of micromobility
(MM) users, influenced by environmental factors
such as geometry, degree of sight, grading, side
barriers, vegetation, and pavement condition in bike
lanes, significantly contribute to most single-user and
between-user accidents (Hossein Sabbaghian et al.,
2023). Recent behavioral studies primarily focus on
capturing the naturalistic riding behavior dynamics of
road users to predict their future positions or compute
surrogate measures of safety (SMoS) (Nabavi Niaki
et al., 2019). These studies serve three main purposes:
proactive safety performance assessment, development
of real-time collision warning systems, and assistance

in decision-making for automated driving (Lu et al.,
2021; Bao et al., 2012; Mullakkal-Babu et al., 2020).

Surrogate Measures of Safety (SMoS) are commonly
classified based on their application (direction,
operational attributes), usefulness scope, and time
nature of the data (Mullakkal-Babu et al., 2020).
Regarding their application scope, SMoS are
categorized by interaction dimensions, including
longitudinal interaction, lateral interaction, and two-
dimensional interaction. Common longitudinal SMoS
indicators include TTC (Time to Collision), GT
(Gap Time), DRAC (Deceleration Rate to Avoid
Collision) or DST (Deceleration to Safety Time),
and PICUD (Potential Indicator of Collision with
Urgent Deceleration). Lateral SMoS like PET (Post-
Encroachment Time) are used to predict risks in
lane change controllers, intersections, and lateral
maneuvers. Some SMoS have applications in both
longitudinal and lateral driving scenarios, such as
Time to Accident (TA), Conflicting Speed (CS), and
Single-step Probabilistic Driving Risk Field. In terms
of operational attributes, SMoS are divided into four
groups: time-based (e.g. TTC and GT), distance-based
(e.g. PICUD), deceleration-based (e.g. DRAC), and
others (Lu et al., 2021). Additionally, SMoS indicators
can be either continuous (TTC, DST, GT) or discrete
(TA, CS, PET) in terms of time (Kathuria & Vedagiri,
2020).

Recent research identifies latent variables like driver
anticipation associated with road geometric design
that predict user behavior, in addition to interaction
variables (Afghari et al., 2023). Sharp curves,
a significant element of road geometry, globally
contribute to frequent crashes. In the Netherlands, 4
out of 62 fatal crashes in 2019 are linked to sharp
curves (Davidse et al., 2020).

Bike lane horizontal curves are categorized into four
types: first curves (not influenced by a preceding
curve), isolated curves (preceded and followed by a
tangent), reverse curves (followed immediately by
a curve in the opposite direction), and consecutive
curves (succeeding in the same direction). Calculating
the forces experienced by cyclists on these curves is
crucial for optimizing bike lane designs. Ul-Abdin et al.
(2020) developed an optimized bike lane system using
theoretical trigonometric derivations to determine the
optimal radius of curvature, considering centrifugal,
centripetal, and gyroscopic forces, and accounting for
variations in the center of gravity location—whether
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on the cyclists, the bicycle, or the connection point
with the road. Nee & Herterich (2022) constructed a
mathematical model of road cycling on various routes
using the Frenet-Serret frame, revealing that braking
before the point of maximum curvature is necessary
to minimize centripetal acceleration, facilitating
acceleration through pedaling out of a bend. Other
studies have focused on velodrome cycling, creating
predictive models to assess the power exerted by
cyclists and the centripetal forces due to tire scrubbing
and tipping during cornering (Bos et al., 2024).

This study prioritizes safety assessment for isolated
curves due to their higher prevalence in a bike
lane network and impact on users control and fall
incidents as well conflicts between cylists and scooter
users. It introduces the Surrogate Measure of Safety
(SMoS) indicator ‘Effective Radius (EFR)’ using a
dynamic tracking approach. This two-dimensional and
trajectory-based measure, coupled with an innovative
methodology, is valuable for identifying potential
geometric design issues on bike lanes. According to the
International Encyclopedia of Transportation (Saunier
& Laureshyn, 2021; Laureshyn et al., 2016), ‘the
validity of SMoS is the degree to which it measures
what it is supposed to measure, that is, road safety
or, in practical terms the expected frequency of
crashes. While the goal is to have a clear and stable
relation to the expected number of crashes expressed
in mathematical terms, as of today the documented
attempts to establish such relations are few and not
always conclusive’. Wang et al. (2021) highlight the
importance of Surrogate Safety Measures (SSM) for
traffic safety evaluation, particularly when reliable
statistical safety models are unavailable. This is often
due to complex site characteristics or nontraditional
traffic safety treatments, where historical crash data
is insufficient or nonexistent for developing predictive
safety models.

In line with these definitions, EFR measure assesses
the difference between the actual curve radius and
the radius of user’s motion footprint on curves. This
allows us to identify where and to what extent lane
violation and lane excursion occur, as well as the share
of violations in each defined segment. In fact, EFR can
measure safety risks for both free-riding assessments
and for interaction assessment, when crash data for
micromobility users becomes available.

The literature review indicates that road safety
assessment studies utilizing dynamic tracking

employ three data collection methods: observational
(manual tracking, automated tracking), experimental
(instrumented bikes, driving simulator e.g., CarSim,
TruckSim, BeamNG), and GPS/GNSS (Global
Positioning/Navigation Satellite Systems) tracking.
Furthermore, methods for result analysis can be
categorized into dimensionality reduction techniques
(e.g., Principal Component Analysis), statistical
models for count data (e.g., Random Parameters
Negative Binomial LindleyModel, MixedMultinomial
Logit Model), and traditional count distribution models
(e.g., Poisson, Negative Binomial). Additionally,
approaches for analyzing reliability in naturalistic
driving data and general regression models contribute
to a comprehensive classification framework.

The observational tracking method involves discreetly
recording users with video as they naturally move
along their designated path. The camera placement
ensures users are unaware of being recorded, allowing
for the observation of their genuine riding/driving
behavior. For video processing, researchers have
employed semi-automated tracking software, such as
Kinovea (version 8.26). Kathuria & Vedagiri (2020)
utilized this software to investigate pedestrian and
motor vehicle interactions through trajectory-based
data acquisition. Kinovea is a reliable tool for distance
measurement and trajectory-based analysis (Puig-Diví
et al., 2019), offering adjustable video frame rates
and 2D calibration through a ground reference for
environmental coordinate transformation. With the
progress of artificial intelligence, researchers are
employing fully automated tracking through computer
vision technology. Gildea et al. (2023) integrated
computer vision (CV) and artificial intelligence (AI)
to predict and mitigate the risk of single bicycle
crashes at cyclists-tram crossings. Their predictive
model extracts safety-critical details from video data,
improving proactive risk assessment for cyclists. Arun
et al. (2023) utilized artificial intelligence and safety
field theory to analyze videos, estimating the risk
and severity of crashes in road user interactions.
Earlier, Zaki & Sayed (2013), introduced a framework
for automating the clustering of trajectories through CV
to predict future user positions.

Secondly, experimental studies often used
instrumented bike/scooter, simulation software,
and simulation laboratories. Cavadas et al. (2020)
introduced surrogate safety measures, predicting
accident probabilities using Extreme Value theory.
Their bivariate EV models extend existing methods,
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highlighting the significant impact of driver
characteristics and road design on accidents, with a
specific application to passing maneuvers. Simulation-
based approaches are commonly using naturalistic data
for verification. In 2019, Dhahir and Hassan analyzed
combined GPS-based naturalistic driving and CarSim
simulation data, determining failure probabilities
and reliability indices for vehicle stability, driver
comfort, sight distance, and vehicle rollover. They
developed safety performance functions incorporating
exposure variables, curve geometry, and reliability
indices (Dhahir & Hassan, 2019). Other researchers
used reliable simulation software to analyze how
road geometry affects user dynamics (Afghari et al.,
2023; Kordani et al., 2015; Hossein Sabbaghian et al.,
2015). Kordani et al. (2015) used dynamic simulation
approach (CarSim and TruckSim), collected side
friction, and lateral acceleration data of road users
along horizontal curves when coincided with vertical
sag curves.

The last data collection method involves real-
time tracking of road users through their mobile
phones, incorporating GPS. Afghari et al. (2023)
utilized a mobile application to gather individual
free-flow speed profiles on selected freeway
curves, obtaining High-Frequency Floating Car
Data. The study correlated curve start positions
with speed and deceleration/acceleration profiles,
considering geometric features (horizontal radius,
deflection angle, vertical grade, number of lanes,
road width, superelevation, Stopping sight distance
at curve start), operational factors (speed limit),
and pavement characteristics (minimum measured
friction coefficient). Results revealed a connection
between driver anticipation, road geometry, and road
‘predictability’ as a latent variable applicable in a crash
count model. Chen et al. (2020) used bicycle app data
to develop Safety Performance Functions (SPFs) for
bicyclists at intersections.

Geometric characteristics of a bike-lane can affect
safety for Micromobility (MM) users. Besides, MM
users’ behavior is still understudied (Vansteenkiste
et al., 2013).In critical segments like sharp horizontal
curves with restricted sight distance, risky behavior
patterns of users such as lane violation, lane
transgressing, and speeding, could lead to serious safety
concerns.

Therefore, the objective of this study is to propose
a naturalistic data-driven methodology to identify

surrogate safety measures that can be used to assess
safety on isolated horizontal curves. The proposed
procedures can be applied to any curve case study
with a larger sample size to draw conclusions about
any objective factor that may affect safety of users of
horizontal curve of a bike lane.

2 Methodology

This study proposes a novel surrogate indicator
for curve safety assessment, utilizing a naturalistic
framework to track the speed and trajectory of
micromobility (MM) users on bike lanes through
motion analysis. An isolated sharp curve with critical
geometry (small radius and sharp deflection angle)
serves as the initial analysis focus, selected from a total
dataset of 30 isolated curves collected during fall 2022
in Valencia, Spain. Figure 1 outlines the methodology
in six main pillars, each with corresponding steps to be
discussed in detail in the following sections.

2.1 Site selection

The initial steps in the motion analysis methodology
involve selecting a case study site and collecting
geometric data. Various curves with different
degrees of curvature and radii are identified across
all city divisions (northeast, northwest, southeast, and
southwest) to ensure a representative stratified random
sample of the entire network. Additionally, cases are
chosen based on bike lane traffic volume to streamline
data collection, enabling the recording of a sufficient
number of users in a shorter time frame. The selected
sites are labeled based on their location and order of
selection. For example, the third site chosen in the
northwest side of the city is named NW3. They are
further classified into flat (>90 degrees), sharp (<90
degrees), and 90-degree curves. The details, including
coordinates, are stored in an Excel file. Additionally, a
kml file is generated, featuring all identified curves and
the final selections, differentiated by colors. The map
includes labels and information on the type of curves.

While the primary goal of this study is to illustrate the
applicability of the proposed methodology through a
single case study, achieving conclusive results requires
the analysis of a more diverse set of cases from different
divisions to enhance the robustness of our approach. It
is crucial to emphasize that this methodology excludes
other curve types, such as reverse curves and successive
curves. Inmost cases, sharp and consecutive changes in
deflection angles on these curve types pose challenges

4



Hossein Sabbaghian et al. | Traffic Safety Research vol. 7 (2024) e000057

Figure 1 Overview of the methodology

for bike lane users, leading to violations. Such curves
are typically encountered when there are inevitable
obstructions like bus stops, buildings, or trees along the
bike lane.

2.2 Geometric data collection

After site selection, the subsequent step involves
gathering precise geometrical data for the selected
curves. To achieve this, the last orthophoto map
of Valencia and the curve alignment creation tool in
the Civil 3D CAD software are utilized. Freehand
drawing, using the tangent-tangent (with curves) tool,
is employed to sketch bike lane curves on the imported
orthophoto. The created curve is then adjusted to align
with the center line of the selected isolated curve on the
bike lane. Subsequently, in the alignment grid view,
geometric parameters of the created curve are extracted
and recorded in the external Excel file established in
the previous step. These parameters encompass curve
radius, deflection angle, chord length, and degree of
curvature.

2.3 Record real users

In the third step, naturalistic video data of bike lane
users is collected using Garmin Virb Cameras and
tripods. The wide lenses of the Garmin Camera
facilitate a 360-degree coverage of the entire curve (HD

1080p) when placed near the bike lane. The Camera is
also equipped with GPS that could capture position of
the tripods at a frequency of 10 Hertz. The adjustable
tripods, reaching up to 6 meters in height, have the
camera fixed on top and are wirelessly controlled via
Bluetooth. The tripods are strategically placed to offer
a close-up view of the entire curve without drawing
attention from users. This is monitored throughout
the data recording by observing the gaze and head
movements of passing users, and if it is determined that
the camera attracts attention, it is relocated.

2.4 Speed and position extraction

The video data recorded in the third step must undergo
undistortion before extracting the speed and position
of the users. This is achieved using a Python
script based on the OpenCV library and calibration
parameters obtained from the camera. Subsequently,
the undistorted videos are imported into Kinovea
software for trajectory and speed extraction.

To monitor the lateral position and speed of
Micromobility (MM) users, three specific points along
the curve centerline were identified: Point of Curvature
(PC), Midpoint (MP), and Point of Tangency (PT)(see
Figure 2). These points act as crucial markers with
specific coordinates and corresponding timestamps.
These data is obtained from those users riding under
free flow condition to shape and calculate effective
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Figure 2 Definition of specific points for speed and position extraction: (a) tangent and normal vectors, (b) centers

trajectory curves and their corresponding radii based
on actual user trajectories. Additionally, the directional
movement on the curve is categorized into Left-Turn
(LT) and Right-Turn (RT) movements, allowing for
a comprehensive assessment of directional effects. In
Figure 2, subfigure (a) shows the actual curve (white
line) and fitted trajectory (blue line) passing through
three points: PC, MP, and PT. Cyclists’ directions and
normal vectors are estimated from 3D to 2D video
data. Subfigure (b) displays the actual curve’s center
(Xc, Yc) and the trajectory center (Xt, Yt), along with
lateral distance vectors always perpendicular to the
center line.

2.5 Visualization, analysis, and development of
effective radius

The coordinates and corresponding timestamps
obtained in step 2.4 are utilized for estimating the
effective radius and conducting speed analysis. In
order to evaluate rider displacement and assess the
risk of lane violations, four lateral regions of interest
were segmented along the curve (see Figure 3): on the
centerline (CL) with a±47.5 cm buffer from each edge
of the central marking (10 cm width), within the lane
(LN), on the opposite lane (OPL), and outside the bike
lane (OTL). The buffer selected for the CL region is
based on the standard operational width considered for
cyclists (75 cm), divided in half to account for users
riding closest to each edge of the central marking and

the potential for collisions with opposing users.

For speed analysis, the average speed of each user along
the horizontal curve was calculated from observed
speeds at specific points. Kinovea software tracked the
lateral position coordinates (x, y) and speed of each
user type (cyclists and e-scooterists) after grid system
calibration using on-site references. Data from 74 users
(50 cyclists and 24 e-scooterists) were used to derive
effective radius, displacement heatmap, and speed
patterns. Kinovea’s reliability in evaluating motion
patterns is supported by previous studies (Laureshyn
et al., 2016; Wang et al., 2021).

3 Results

In this section, effective trajectory arcs and correlated
displacement of bike users on Left-Turn (LT) direction
are presented so as to prove the usefulness of the
proposed methodology. Additionally, a comparison
between both travel directions –Left-Turn and Right-
Turn– is included to illustrate the differences of
effective radius among different directions and user
types. The selected curve site, labeled as SW1
(coordinates: 39.470317, -0.383590), and located in the
southwest region of the city of Valencia (see Figure 4),
has the following geometric characteristics: Radius =
5.11 meters, Deflection Angle = 70.5 degrees, Length
= 6.3 meters, Degree of curvature = 341 degrees.
The curve is positioned at a streetlight, and data were

6



Hossein Sabbaghian et al. | Traffic Safety Research vol. 7 (2024) e000057

Figure 3 Regions of Interest for identifying user’s position on the curve with users making a right-turn (background image
source: NYC DOT (n/d))

recorded only during green-light periods for cyclists to
ensure the inclusion of free-flow movements.

3.1 Effective radius

The effective trajectory arcs and their centers for the
LT movement of bike users are illustrated in Figure 5a.
The actual curve is represented by the black arc and blue
center, while the colored arcs with their corresponding
green centers demonstrate the effective curve for 25
bike users in that direction. In Figure 5b, a box-whisker
plot is shown for both travel directions and types
of users (25 users per type per direction), revealing
a significant dispersion of the effective radius for
LT movement. The dispersion can be attributed to
bike lane-side conditions, particularly when lanes are
situated on sidewalks, and in the LT, users tend to
cut the curve and violate the opposite lane probably
to maintain their speed or to distance themselves
from nearby pedestrians. In this case study, for RT
movement, due to the presence of segregator, users
were tending not to violate their lanes, as it could
leave them with no space to maneuver in case of
encounter maneuvers. Accordingly, cyclists exhibit
larger lateral acceleration, role angles, and steering
angles comparing to e-scooters (Dozza et al., 2022).

This can explain why e-scooterists had similar patterns
regardless of their travel direction. The roll angle refers
to the tilt of a vehicle’s body about its longitudinal
axis, while the steering angle describes the direction
the wheels are turned relative to the vehicle’s straight-
ahead position.

3.2 Lateral displacement

A heat map is created from observed MM user
displacements relative to the centerline at key points
(PC, MP, and PT). Displacements are categorized into
four regions: on the center line (CL), within the lane
(LN), on the opposite lane (OPL), and outside the bike
lane (OTL). Figure 6 displays a heatmap where the Y-
axis represents PC,MP, and PT sections, and the X-axis
indicates the defined regions of interest on the bike lane.
It visualizes the proportion of micromobility users in
these regions through a curve.

Results show that the highest displacement of bike
users to the opposite lane in the left turn (LT)
direction occurred at MP (Figure 6a and Figure 6c),
with above half of users veering into the opposite
lane. The variation in effective radius could primarily
be influenced by the geometry and users’ desire to
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Figure 4 Curve Site Under Study (SW1): (a) Camera View, (b) Areal view, and (c) Street View (GoogleMaps, n/d)

Figure 5 Effective radius: (a) trajectories on Left-Turn direction and (b) effective radius box and whisker plot
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maintain their speed, as well as by the perception
of free-riding users on crossing segments parallel to
pedestrians’ crosswalks. Conversely, over 70% of
users at MP stayed in their lane during right turns,
with cyclists showing the highest compliance at 92%
(Figure 6b and Figure 6d). This indicates that users
navigating inside the curve adhered to their lanes better
than those on the outside (left-turn). However, 17%
of right-turning scooter users at MP left the bike lane,
increasing their risk of conflicts with cars or solid
objects. In the CL region, scooters were more prone to
crossing conflicts on PC, particularly during left turns
(50% on PC). Overall, scooter behavior on this curve
is riskier, making them more vulnerable to head-on and
crossing conflicts, and collisions with cars, trees, and
pedestrians.

3.3 Speed analysis

User speeds in the sections of interest were estimated
using Kinovea, based on time stamps and distances
between segments. Table 1 provides a descriptive
analysis of these speeds by section. The standard
deviation indicates that left-turn cyclists have up to
six times more deviation from the mean speed across
all sections. The highest 85th percentile speed among
cyclists is in the PT section. For scooters, the MP
section is more critical, with most right-turn users
exceeding 20 km/hr and a maximum speed of 42 km/hr.

According to the Dutch design manual for bicycle
traffic (CROW), the design speed for a bike lane curve
with a 5-meter radius (our case study) is 12 km/hr.
Table 1 shows that, except for right-turn cyclists, the
85th percentile speeds of all users exceed this design
speed, in one case by up to 15 km/h (bike LT on MP).
Currently, there are no speed limit signs to enforce
lower speeds on these curves, and even the general
speed limit of 20 km/hr is frequently violated by cyclists
(see Table 1). For instance, during a left turn, the 85th
percentile speed was around 27 km/hr in the middle of
the curve. These findings highlight the urgent need for
speed control strategies by enforcement and signage for
micromobility.

3.4 Speed-EFR correlation

To assess any correlation between EFR and speed, a
statistical correlation analysis was conducted in JASP
(version 18.3). Due to high dispersion and non-
normality, two non-parametric methods, Spearman
and Kendall, were employed. Spearman’s rho and

Kendall’s tau B are robust methods against non-normal
data and enable capturing monotonic relationships
between variables, with Spearman’s rho being more
sensitive to large deviations and Kendall’s tau B
placing equal weight on all discordant pairs, thus
providing complementary perspectives in analyzing
the correlations. The results revealed statistically
significant negative correlations between speeds and
EFR on the PT section (see Table 2). This suggests
that as EFR increases, speed on PT could decrease,
and vice versa. Figure 7a and Figure 7b depict
correlational heatmaps for each method, providing a
visual representation of these findings.

4 Discussion

In this section, the proposed method is compared with
othermethods, and the advantages and disadvantages of
each are discussed. Two major aspects of the proposed
method are using naturalistic video data and employing
computer vision software to extract user motions from
the videos.

With advancements in Artificial Intelligence
(AI) and Computer Vision (CV), researchers
assessing micromobility safety increasingly use these
technologies to automate user tracking and extract
detailed operational parameters. The computer-based
software (Kinovea) used for this study has been
validated in many previous research with similar
objectives (Kathuria & Vedagiri, 2020; Paolino &
Zampa, 2023). These studies mainly focused on users’
motion parameters, including the speed, acceleration,
deceleration, lane changing, and trajectory, to
proactively assess risky movements by observing
naturalistic maneuvers. In such studies, users are
unaware they are being recorded, allowing for the
assessment of genuine behavior. However, this
approach faces legal limitations. In some countries,
identity protection laws require researchers to apply for
permissions limited to certain areas or prohibit the use
of regular cameras. Instead, thermal cameras may be
required to protect users’ identities.

There are also studies using surveillance camera data
and computer vision to address traffic congestion.
A significant difference between these studies and
the proposed method is that users are usually aware
they are being recorded, often warned by signage
about the presence of cameras. For example, in a
study on road congestion surveillance by Rodríguez-
Esparza et al. (2024), an optimized algorithm was used
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Figure 6 Displacement heatmap: (a) left-turn bikes, (b) right-turn bikes, (c) left-turn scooters, (d) right-turn scooters

Figure 7 Correlation heatmap: (a) Spearman’s rho, (b) Kendall’s tau B
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Table 2 Statistical correlation between effective radius and speed and speeds at different sections

Pearson Spearman Kendall
r p rho p tau B p

EffectiveRadius - Speed.PC 0.117 0.245 -0.195 0.051 -0.144 0.042
EffectiveRadius - Speed.MP 0.123 0.223 -0.152 0.132 -0.104 0.140
EffectiveRadius - Speed.PT 0.029 0.775 -0.283 0.004 -0.181 0.010
Speed.PC - Speed.MP 0.507 < .001 0.480 < .001 0.354 < .001
Speed.PC - Speed.PT 0.555 < .001 0.531 < .001 0.404 < .001
Speed.MP - Speed.PT 0.653 < .001 0.708 < .001 0.528 < .001

to automatically detect, segmentize, and post-process
video data of traffic surveillance cameras.

Another aspect that differentiates this method from
others is whether the objective is to assess solely
the users’ motion or their interactions. This study
focuses on themotion tracking of individual users under
free-riding conditions, wherein the dynamic response
(trajectory) of each individual users is calculated,
visualized and statistically compared. In this process,
the EFR is compared with the actual curve radius and
risky maneuvers and their frequency are identified.
The idea of the method was inspired by a recently
established method known as movement-based safety
analysis, which involves more accurate estimation
of time-based interaction measures, such as Time-to-
Collision (TTC) and Post-Encroachment Time (PET),
during near-miss scenarios (Nabavi Niaki et al., 2019).
Interaction-based studies primarily concentrate on
refining algorithms for automated data extraction.
For instance, a recent study by Gildea et al. (2023)
a cyclist tracking algorithm was introduced, employing
computer vision (CV) to evaluate single bicycle crashes
(SBC) or falls (SWOV, 2023b). This algorithm
integrates three main components: object detection
to identify bicycle position and orientation, semantic
segmentation to delineate bicycle and rider, and human
pose estimation for assessing rider posture and lean
angle.

Other studies fall into two categories: semi-naturalistic
and simulation-based approaches. These approaches
predominantly employ instrumented devices like
sensors, cameras, and simulators with virtual reality
capabilities to evaluate bike lane safety. In a recent
study by Almallah et al. (2024), a simulator was used to
evaluate different on-road cycling lane layouts, finding
that colored lanes improve safety on left alignment
curves, while uncolored lanes are safer for straight
and right curves. Another study combined traffic

simulations with instrumented bicyclists, observing
their behavior in different road conditions (Johansson,
2023). Shoman et al. (2023); Uijtdewilligen et al.
(2023) analyzed data from instrumented city bicycles
to study user behavior, demographics, perceptions, and
dynamics. They introduced behavioral risk indicators
(BRIs) based on user perceptions and experiences
rather than trajectory analysis, focusing on speed and
surveys regarding bike lane conditions and interactions.

Finally, it should be noted that the main limitation of
this study is the lack or nonexistence of crash data on
conflicts between cyclists, scooters, and fall incidents.
Therefore, EFR is initially designed to pinpoint
individual risky behavior patterns (free riding),
demonstrating that a practical and fast safety risk
assessment can be performed even without crash data.
EFR is considered useful because many injuries among
micromobility users result from unreported falls, often
due to user riding behavior influenced by design. To
assess the safety of a design regarding falls, individual
user motion must be studied before examining
interactions between users. This means that our big
data that in proactive safety assessment had included
near-misses and historical crash data, will now also
include individual risky maneuvers. This will increase
the accuracy of the overall assessment. EFR helps
evaluate the risk of individual motions (free riding) to
estimate fall risk, even before considering crash data.
With advancements in big accident data collection,
such as using CAVs, crash data can eventually be
incorporated to optimize assessments. At this stage,
EFR is specifically designed to address conflicts
between micromobility users and objects/pedestrians
on sidewalks during curve navigation, rather than
conflicts with cars. Therefore, relevant accident data
to associate with EFR will involve only micromobility
users and pedestrians.
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5 Conclusions

The methodology presented in this study introduces
a innovative surrogate indicator for curve safety
assessment, utilizing a naturalistic framework to
monitor the speed and trajectory of Micromobility
(MM) users on bike lanes. Focusing on isolated
sharp curves with critical geometry, this approach
provides valuable insights into user behavior and
risk factors. It also facilitates the exploration of
additional safety variables and graph visualizations
in future studies, thereby advancing curve safety
assessment for micromobility users. Employing
visualization techniques like trajectory plans, heat
maps, and box-whisker plots, this method uncovers
crucial insights into lane violations and collision
risks. The segmentation and graphs utilized offer
a deeper understanding of user behavior’s cause
and spatio-temporal data as they navigate through
the curve. In summary, this method effectively
assesses curve safety, highlighting potential collision
hotspots and speed-related risks. Furthermore, the
adaptability of this approach allows for its application
to diverse environmental features, enabling future
studies to explore additional safety variables and graph
visualizations. Overall, the methodology presented
here demonstrates promise in advancing curve safety
assessment for micromobility users.

The main limitation of this study was the lack of crash
data related to conflicts between cyclists, scooters, and
fall incidents. The authors believe that with access to
such data, a significant extension of this study could
involve associating these data with the proposed EFR
measure. This would optimize the safety assessment
and help identify the most critical black spots.
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