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Abstract: As a major component of riding comfort, surface roughness has a significant impact on
peoples’ decision to ride bicycles. Riding comfort is most commonly derived from accelerations
measured by inertial measurement units (IMUs). However, roughness metrics from different works
are not directly comparable as no ‘benchmark data’ exists. This work aims at alleviating this problem
by comparing several well-established methods from literature on the same data. Furthermore,
to quantify the effect of different sensor systems, for each test run data from both a smartphone
and an industrial grade IMU were collected. To compare the derived roughness measurements,
the reliability and stability of each sensor-method combination is calculated using non-parametric
statistics. The results indicate handlebar mounted smartphones to be sufficient for surface roughness
assessment. Furthermore, the selected roughness calculationmethod has the biggest impact on resulting
assessments, above the impacts of both sensor and analyzed segment length. Based on the results,
recommendations for surface roughness assessment are provided in the conclusion.

Keywords: cycling comfort, inertial measurement unit (IMU), infrastructure assessment, sensor bike,
surface roughness

1 Introduction

Faced with climate change, congestion and health
issues, governments and public bodies throughout
the world should try (UN, 2024; EC, 2023; Holger
et al., 2015) to promote cycling as a sustainable,
space efficient, and healthy mode of transport. An
important factor for people’s decision to ride a bicycle
is cycling comfort (Ayachi et al., 2014; CROW,
2016). The surface roughness of bicycle infrastructure
is, among others, a vital component of bicycle
comfort (Landis et al., 1997; Hoelzel et al., 2012;
Castañon & Ribeiro, 2021). Multiple works also
mention roughness to influence safety (Hoelzel et al.,
2012; Zang et al., 2018; Kranzinger & Leitinger,

2021) or actively investigate the correlation (Gadsby
et al., 2022; Astarita et al., 2014). Furthermore,
well-established methods to measure surface roughness
exist. Most works on measuring the surface roughness
of bicycle infrastructure use acceleration data collected
with IMUs (Zang et al., 2018; Kranzinger & Leitinger,
2021; Bíl et al., 2015; Litzenberger et al., 2018;
Nuñez et al., 2020). The collected accelerations
are then further processed on a segment-wise basis
to derive roughness metrics. However, there are
different approaches to every single step of this process.
With the details explained in section 2, there are
differences in the type of IMU used, mounting position,
sampling frequency, segment length and used axes of
the accelerometer.

Traffic Safety Research vol. 7 (2024) e000076
https://doi.org/10.55329/guai2275

https://orcid.org/0000-0002-7870-8127
https://orcid.org/0009-0007-9169-1538
https://orcid.org/0000-0001-9407-9570
https://orcid.org/0000-0003-4052-5867
mailto:moritz.beeking@salzburgresearch.at 
https://doi.org/10.55329/guai2275


Beeking et al. | Traffic Safety Research vol. 7 (2024) e000076

The most important well-defined standard in the
context of surface roughnessmeasurement is ISO 2631-
1 on ‘Mechanical vibration and shock - Evaluation of
human exposure to whole-body vibration’. It defines
acceptable vibrational acceleration levels measured an
weighted at different frequencies between 0.1 Hz to
80 Hz. Measurement locations, directions, and further
process characteristics are also lined out. (ISO, 1997)

Furthermore, the International Roughness Index (IRI)
is a well-established metric in road surface assessment.
It is defined as the vertical displacement between the
actual road surface and a virtual ideal plane. Its unit is
either millimeters of displacement per traveled meter or
meters of displacement per traveled kilometer (metric
system, identical), or inches of displacement per
mile traveled (imperial system, linearly proportional).
The IRI is based on the so-called quarter-car model
simplifying vehicles to a single wheel with both sprung
and unsprung mass atop. (Sayers & Karamihas, 1998)

Although based on ISO 2631-1 and the IRI some
recurring aspects exist, every work introduces its
own method of calculating roughness based on the
measured accelerations. While the findings of some
of these works have been cursorily compared (Gadsby
& Watkins, 2020), a proper comparison of methods
and their characteristics has not been conducted yet.
Similarly, according to a recent review on the related
topic of bikeability indices (Castañon&Ribeiro, 2021),
several existing works point out that the lack of
comparability and standardization is hampering the
applicability of bikeability indices. The same effect can
be assumed for surface roughness indices. Therefore,
the aim of this work is to compare the results of
applying selected roughness calculation methods to
data collected with two different sensors during the
same test rides. The overall process to do so is outlined
in Figure 1.

As described in detail in section 3, two criteria were
developed for comparison of the resulting assessments.
First, the reliability, defined as the agreement of any
given assessment with all other assessments for the
same segment. And second, the stability, defined as
the inverse of the dispersion of each sensor-method
combination per segment. Based on these criteria,
each sensor-method combination’s assessments are
evaluated. Finally, using these evaluations as well
as practical considerations like sensor availability or
ease of method implementation, recommendations for
choosing the right sensor-method combination for a

given task are provided.

The rest of this work is structured as follows. First,
the most relevant works on bicycle comfort and
especially roughness assessment based on acceleration
measurements are described. Special attention is
given to the selection of the five works chosen
for comparison. Subsequently, the methodology
consisting of data collection, roughness calculation
and comparison of results is described in detail. Next,
the stability and reliability of the different sensor-
method combinations are compared and interesting
findings pointed out. Last, the work is concluded by
emphasizing the main findings and their implications
for bicycle infrastructure assessment, and finally
pointing out possible future research directions.

2 Related work

The research fields of cycling comfort estimation
and especially surface roughness estimation based
on acceleration measurements have both been well
explored in the past. The following chapter will first
outline some relevant reviews and works on bicycle
comfort, emphasizing the role of surface roughness.
Subsequently, typical sensor setups and measuring
parameters for accelerationmeasurement are presented.
Next, the basics of roughness calculation and some
notable examples are presented. Finally, the selection
process used to decide which methods to feature in
this comparison, as well as some general features of
the selected methods will be described. The in-depth
explanation of the implemented methods can be found
in section 3.

2.1 Cycling comfort and surface roughness

Numerous concurring definitions of cycling comfort
can be found in literature (CROW, 2016; Landis
et al., 1997; Castañon & Ribeiro, 2021; Yamanaka &
Namerikawa, 2007; Yamanaka et al., 2013). However,
there are certain recurring aspects of comfort mentioned
by the majority of works on the topic. Both cycling
comfort in general and its sub-aspect surface roughness
are often referred to in so called bikeability indices
trying to assess how well-suited a given area is for
cycling. The review of bikeability indices by Castañon
& Ribeiro (2021) provides a good overview of recent
works on the topic and, more relevant here, bikeability
criteria considered by these works. The criteria
analyzed most often are geometric design features of
the cycling infrastructure, the accessibility of relevant
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Figure 1 Comparison process outline

areas, the traffic safety and the topography of the
study area. Each of these aspects was considered
by eight out of the 14 works they looked at. The
geometric design features include the surface type and
condition, used by 5 out of the 14 works as a bikeability
indicator. The only other indicator also used by five
of the included works was the presence of dedicated
cycling infrastructure. Thus, the surface roughness,
considered to result from the combination of surface
type and condition, can be considered to be among the
most relevant aspects of cycling comfort. (Castañon &
Ribeiro, 2021)

Yamanaka et al. (2013) and Yamanaka & Namerikawa
(2007) developed and calculated a bicycle level-
of-service in two separate works. In the first
work (Yamanaka & Namerikawa, 2007), they listed
the roughness of the road surface, the required effort
by the cyclist, and braking, slow speed, speed deviation
and comfort of speed as the main factors of a bicycle
level-of-service. For the secondwork (Yamanaka et al.,
2013), they changed this list to the stability of the speed,
stops, vibrations, steering, traffic density, and braking
behavior. Although in the later work vibrations were
considered less important, they still confirm surface
roughness to be a relevant aspect of cycling comfort.

Surface roughness being ofmajor importance to cycling
comfort is not a new concept either. In the late eighties,
Axhausen et al. already found it to be of importance
especially for experienced cyclists in a preference
study (Axhausen & Smith, 1986). This was later
experimentally proven by Landis et al., finding a strong
correlation between pavement surface condition and
participants comfort perception (Landis et al., 1997).
Last, the English version of the Dutch CROW Design
Manual for Bicycle infrastructure, often considered a
kind of gold standard for cycling infrastructure, states
‘The surfacing on the road section should satisfy the

requirements in terms of evenness.’ (CROW, 2016).

2.2 Acceleration measurements

Measuring surface roughness of cycling infrastructure
based on accelerations is a well established approach
with recurring components found in literature.
While several, especially earlier, works used
dedicated accelerometers (Bíl et al., 2015; Gao et al.,
2018; Olieman et al., 2012; Neto et al., 2018),
most recent works rely on smartphones for data
collection (Zang et al., 2018; Kranzinger & Leitinger,
2021; Litzenberger et al., 2018; Nuñez et al., 2020;
Wijerathne et al., 2018). In most cases, authors use
vertical acceleration values, either by installing the
IMU in such a way that one axis is perpendicular to
the ground plane (Bíl et al., 2015; Nuñez et al., 2020),
or by calculating the resulting vertical acceleration
from all three axes (Zang et al., 2018; Kranzinger &
Leitinger, 2021; Neto et al., 2018). Some works use all
three axes of the accelerometer directly (Litzenberger
et al., 2018; Gao et al., 2018). The accelerometers
and smartphones in these studies are mounted to the
fork (Bíl et al., 2015), the handlebar stem (Zang
et al., 2018; Kranzinger & Leitinger, 2021), the left
or right half of the handlebar (Gao et al., 2018), or
the front (Litzenberger et al., 2018; Neto et al., 2018)
or back (Nuñez et al., 2020) of the top tube. Typical
sampling frequencies for the acceleration data range
between 20 Hz (Bíl et al., 2015) and 100 Hz (Zang
et al., 2018; Litzenberger et al., 2018), with 50 Hz being
most common (Kranzinger & Leitinger, 2021; Nuñez
et al., 2020; Neto et al., 2018; Wijerathne et al., 2018;
Harikrishnan & Gopi, 2017) and occasional higher
values up to 512 Hz (Calvey et al., 2015).
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Figure 2 Common mounting positions of accelerometers for surface roughness assessment.To the top right of either
drawing, the corresponding axes are annotated. These are the assumed axes of the bicycle, the axes of the actual
accelerometers should be expected to be at least slightly rotated.

2.3 Roughness calculation

With regard to the roughness calculation, ISO 2631-
1 (ISO, 1997) on whole body vibrations is often
mentioned as a basis for roughness measures and
indices (Nuñez et al., 2020; Gao et al., 2018).
Furthermore, the IRI (Sayers & Karamihas, 1998) is a
well-established roughness measure. Therefore, some
works try to directly calculate it (Zang et al., 2018),
while some consider closely relatedmeasures (Bíl et al.,
2015; Gao et al., 2018). Other works introduce their
own comfort measures not related to ISO 2631-1 or the
IRI (Kranzinger & Leitinger, 2021; Wijerathne et al.,
2018).

Roughness calculation is typically performed on a
segment-wise basis. There is no standard segment
length, with 5 m (Nuñez et al., 2020), 10 m (Kranzinger
& Leitinger, 2021), 20 m (Zang et al., 2018), and
100 m (Bíl et al., 2015) all found in literature. In some
works, test rides are not segmented further and instead
roughness is calculated per test route. Gao et al. (2018)
analyzed test routes with an average length of 250 m,
while Litzenberger et al. (2018) choose test routes with
approximately 100 m each. Neto et al. (2018) did not
group the measured accelerations by travel distance but
by time, calculating roughness for every 2 seconds of
collected data.

In recent years, sensor equipped bicycles have become
a lot more prevalent than before, also yielding more
works on surface roughness assessment. A very good
overview of the use of these sensor bicycles in research
was compiled by Gadsby & Watkins (2020). They

list six works investigating pavement condition. Two
works by the same research group (Calvey et al., 2015;
Taylor & Fairfield, 2010) describe a sensor bike suited
for acceleration measurement but no actual calculation
of surface roughness. One work used a neural network
to classify different pavements (Neto et al., 2018),
however their description was considered unsuited for
reimplementation. Two works (Bíl et al., 2015; Nuñez
et al., 2020) were chosen for comparison and are
described in the next section.

Wijerathne et al. (2018) describe a sophisticated
approach to calculate surface roughness independent
of accelerometer position and orientation. To this
end, they used four smartphones, one mounted on the
handlebar, one in a front bag, one attached to the test
riders arm, and one carried in a backpack. They used
a wavelet-transform followed by a Taylor expansion
and tested for Lipschitz continuity to detect bumps.
Although impressive, their work was not chosen for
comparison in this work. The reason is their focus
on detecting single bumps, making comparison with
methods yielding a segment-wise roughness metric
difficult (Wijerathne et al., 2018).

2.4 Used methods

From the numerous works using IMUs on bicycles for
surface roughness calculation, a selection was made
based on three considerations:

1. Popularity: well-cited works were chosen over less
known ones in an attempt to compare the most used
and therefore most relevant approaches.
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2. Quality of description: for comparison, a
reimplementation of the selected methods was
necessary. Therefore, methods were excluded
if their original description was not sufficiently
detailed for this.

3. Uniqueness: methods significantly different from
others were chosen over slight alterations of more
popular works.

Ultimately, five works were chosen for comparison.
The works by Bíl et al. (2015) and Zang et al. (2018)
are the most cited works on roughness calculation
from accelerations measured using a sensor-equipped
bicycle. Bíl et al. (2015) describe their algorithm
for roughness calculation commendably concise. Zang
et al. (2018) on the other hand are among the few
authors usingmore than one accelerometer axis for their
calculations. However, as a first step they derive the
vertical acceleration for further processing. Gao et al.
(2018) are among the even fewer authors actually using
all axes and their work is still fairly popular. All of these
methods produce numerical metrics. However, for
further use in categorization or maintenance of bicycle
infrastructure, ordinal metrics are often preferable.
Therefore, twoworks presentingmethods yielding such
metrics were also chosen for comparison: The work
by Nuñez et al. (2020) combines video analysis and
acceleration measurements for assessing the quality
of cycling infrastructure. To this end, they also
present an adaption of the ISO 2631-1 (ISO, 1997),
yielding six comfort classes for surface roughness.
Last, the method presented by Kranzinger & Leitinger
(2021) has been chosen for comparison. It also yields
an ordinal metric for surface roughness and, more
interestingly, is not based on the acceleration itself but
its first derivative, the so called jerks. The methods for
roughness calculation from accelerations used in these
works are described in detail in section 3, together with
descriptions of the corresponding reimplementations.
The remainder of this chapter outlines the general
approach of each of these works, especially aspects not
found in other works.

Bíl et al. (2015) measure accelerations using a
relatively low frequency of 20 Hz, compared to the
50Hz found in most works. The accelerometer is
attached to the fork of the bicycle in such a way that
one axis is considered vertical and used for roughness
calculation. The separate GNSS sensor is mounted
to the handlebar, both signals are combined after
collection based on their timestamps. For roughness

calculation, only downwards accelerations >1 g are
used. The resulting so-called dynamic comfort index
(DCI) ranges between zero and one. Higher values
correspond to more comfortable roads. (Bíl et al., 2015)

The work by Zang et al. (2018) is based on the idea
of the quarter-car model used for calculation of the
IRI (Sayers & Karamihas, 1998). They measure
accelerations at 100 Hz and GNSS localizations at
1 Hz using a smartphone mounted to the handlebar
stem. Vertical acceleration is derived by projection of
measured accelerations with a reference unit vector
calculated from stand still points at the beginning
of each test run. The IRI is meant to represent
vertical displacement. In order to calculate it, double
integration of the vertical accelerations is used.
The resulting IRI is measured in mm/m vertical
displacement and ranges from zero to approximately
12 mm/m on their test tracks. (Zang et al., 2018)

Gao et al. (2018) used an accelerometer mounted on the
left half of the handlebar and a separate GNSS sensor
for data collection. They report neither acceleration
nor GNSS recording frequency. Their test subject was
instructed to keep a constant speed between 12 km/h
to 16 km/h. Following ISO 2631-1 (ISO, 1997), they
weighted the measured accelerations in the frequency
domain using a small band filter. Unfortunately,
they do not report on the parameters of the weighting
or the filter. Notably, they use all three axes of
the accelerometer for roughness calculation without
extracting the vertical component first. Their so called
Dynamic Cycling Comfort (DCC) ranges between zero
and just above three for their test routes. (Gao et al.,
2018)

Nuñez et al. (2020) use two sensors to calculate
their so called Bicycle Environment Quality Index
(BEQI), a camera mounted at the front of the frame
for capturing videos and a smartphone mounted on the
top tube in front of the saddle to capture accelerations.
The smartphone is mounted parallel to the ground
such that a single accelerometer axis is considered the
vertical acceleration. Accelerations are sampled at
50 Hz. Notably, they used frequency analysis to find
characteristic frequencies of different pavement types.
Based on ISO 2631-1 (ISO, 1997), roughness is rated
as one of six classes depending on the root mean square
of vertical accelerations. (Nuñez et al., 2020)

Kranzinger & Leitinger (2021) are the only authors
using the derivative of vertical accelerations, called
jerks, to calculate surface roughness. They assessed
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the surface roughness of impressive 436.6 km of
cycling infrastructure, analyzing 5 166 km of test
runs. Accelerations are captured using a smartphone
mounted to the stem of the handlebar. Accelerations
are sampled at 50 Hz and GNSS localizations at 1 Hz.
Subsequently, four roughness classes are calculated
per 10 m segment using the k-means++ clustering
algorithm (Arthur & Vassilvitskii, 2007). As input
parameters, the average jerk value and the share of jerks
above a given threshold of 1 200 m/s3 are used. The
roughness metric of each section is then defined as the
class it is assigned to by the clustering. (Kranzinger &
Leitinger, 2021)

3 Methodology

The presented work consists of three main steps
described in detail in the remainder of this chapter:
data collection, roughness calculation and comparison
of results. For data collection, methods from
different existing works are combined in an attempt
to facilitate broad applicability of our results.
Roughness calculation is carried out using careful
reimplementations of preexisting algorithms. The
methods for result comparison were specifically
developed for this work based on well-established
statistical metrics. The general flow of data, as
displayed in Figure 1, is as follows:

1. Data is collected by a smartphone and a dedicated
IMU/GNSS simultaneously.

2. The data is fed into multiple methods from literature
calculating metrics intended to represent the surface
roughness.

3. The resulting assessments are sent to evaluation
algorithms calculating stability and reliability
metrics for each sensor-method-segment-length
combination.

3.1 Data collection

The data used in this work was collected between
September and November 2023 in four cities and
villages in Austria. The test routes are depicted
in Figure 3. Each route was driven 8–16 times.
A smartphone and a dedicated IMU-GNSS-device
were mounted side by side for simultaneous data
collection. For each route, data was collected in
one continuous session, without remounting of any
sensors, as to keep their position and orientation
steady. The collected data was matched to the so

called ‘Graphenintegrationsplattform’ (GIP), a national
Austrian digital road graph (ÖVDAT, 2022; Neto
et al., 2018). The generated trajectories were split
into segments of differing length for segment-wise
roughness calculation. Data from both sensors was
brought to a common data format and collected in a
single data set for further processing.

3.1.1 Sensor setup

The sensor setup used for this work is depicted
in Figure 4. It consists of two different sensors
in different mounting positions. As discussed in
section 2, most recent works rely on smartphones
for acceleration measurement. The reasons are
their ubiquitous availability and ease of combined
acceleration-localization data collection. However, to
the best of the authors’ knowledge, no comparison
whether a dedicated, industrial grade IMU would yield
more reliable or stable assessments has been undertaken
yet.

The two most popular mounting positions found in
literature are the handlebar stem and the top tubes’ front
end. These are very close to each other, however,
like the sides of the handlebar, the handlebar stem
turns when steering while the top tube does not. The
handlebar right and left of the stem is not often used
in literature. However, it is also a commonly used
mounting position for smartphones used for navigation
and similar tasks. These considerations yielded the
following sensor setup:

• An XSens MTI-680G11 containing both an
industrial-grade IMU and GNSS sensor mounted
to the stem of the handlebar.
• A Xiaomi Mi 9X smartphone mounted in the right
half of the handlebar using a rigid steel mounting
kit.

3.1.2 Map matching

To calculate roughness of specific road segments,
the collected data is first mapped onto a graph
representation of the underlying road network. The
GIP, a national Austrian digital road graph (ÖVDAT,
2022) was chosen for this. The GIP divides roads into
sections delimited by points were another road is met
or a significant road characteristic, like the number of

1https://www.movella.com/products/sensor-modules/xsens-mt
i-680g-rtk-gnss-ins
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Figure 3 Test routes investigated in this work. Note the different scales per map, which are a consequence of the very
different lenghts of test routes.

Figure 4 Sensor setup for acceleration data collection. The Xiaomi Mi 9X smartphone can be seen attached to the right
half of the handlebar. The round dark grey device on the handlebar stem is the XSens MTI-680G, containing an industrial
grade IMU and GNSS sensor. As can be seen, the XSens is slightly tilted upwards, yielding an IMU z-axis slightly pointing
backwards towards the rider. The Smartphone on the other hand is tilted back and to the left, resulting in an IMU z-axis
pointing approximately towards the riders left shoulder.

lanes, changes. Especially in inner city scenarios, this
may yield many very short sections.

Roughness calculation is usually done for fixed length
segments. For this work, the selected legths are: 5
m (Nuñez et al., 2020), 10 m (Kranzinger & Leitinger,
2021), 20 m (Zang et al., 2018), and 100 m (Bíl
et al., 2015). Gao et al. (2018) did not use fixed length
segments but defined test routes with an average length
of 250 m. To calculate the segment-wise roughness
assessments, the mapped data points are regrouped by
specifically created fixed-length segments. This is done
by subdividing GIP sections into segments of the given
length and combining parts of them where necessary.
To map the collected data onto the GIP, the following

steps are performed:

• First, for each test run, a trajectory consisting of all
collected GNSS localizations and their correspond-
ing time stamps is extracted.
• These are mapped onto the GIP sections using an
existing implementation of the approach described
by (Rehrl et al., 2018).
• For each route, the segmentation into fixed length
segments is calculated such that any given position
on any GIP section along the test route corresponds
to exactly one fixed-length segment.
• The section-mapped accelerations are then assigned
to the corresponding fixed length segments,
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yielding a list of measurements per test run and
segment.

3.1.3 Data set

The data used for this study was collected along the test
routes depicted in Figure 3. Test riders were instructed
to keep a speed of approximately 20 km/h. In total,
72.2 km of test rides were conducted, resulting in 11.3
h of test data covering 4.6 km of cycling infrastructure
with different surface types as listed in the figure.
Along these routes, 77 118 GNSS localizations and
1.66million accelerationmeasurements were collected.
2 691 acceleration measurements are considered to be
collected from an unmoving bicycle and used for the
calculation of reference vectors for the extraction of
the vertical acceleration component as described in
section 3.2.1. After filtering by speed as described in
section 3.2.2, 834 thousand accelerationmeasurements,
about half of the collected measurements, remained for
roughness calculation. Depending on segment length,
these were assigned to one of 1 193 segments of 5 m,
595 segments of 10 m, 296 segments of 20 m, or 57
segments of 100 m length. The apparent mismatch with
the reported 4.6 km of infrastructure is a consequence
of segments driven in both directions being counted
once for total assessed infrastructure but twice (once per
direction) when creating fixed length segments. The
slight mismatch between the different segment lengths
is a consequence of the last parts of each test route
shorter than the given length being dropped.

3.2 Roughness calculation

To calculate the roughness based on the accelerations
grouped by segments there are some preprocessing
steps followed by the actual roughness calculation
methods. First, required for all compared methods but
the one by Gao et al. (2018), the vertical component
needs to be extracted from the three accelerometer
axes. Also accelerations are filtered based on speed to
clip stop points, slow sections and also GNSS errors
resulting in very high speeds and possibly erroneously
map matched measurements. Finally, the actual
roughness calculation using the reimplementations of
the methods selected for comparison is performed. The
result is one rating per test segment, sensor and method
to be compared subsequently.

3.2.1 Calculation of vertical acceleration
component

All tested methods except the one proposed by Gao
et al. (2018) use only the vertical acceleration for
roughness calculation. As the two sensors were
mounted in different orientations, both with no
accelerometer axis pointing precisely downwards,
vertical accelerations had to be calculated from all
three axes. Following Zang et al. (2018), this was
done using reference gravitational acceleration vectors
collected while the bicycle was standing still. While
the authors of Zang et al. (2018) instructed their test
riders to keep the bike steady for the first five seconds
of each test ride we chose a different approach. We
filtered all collected accelerations by two criteria:

1. A speed below 10−3 m/s. This was considered
as the bicycle not moving along the test route.
The speed was calculated from GNSS data, GNSS
sampling at 10 Hz with the localization precision
limited by the used GNSS sensors. Given these
prerequisites, no lower speeds were observed in
the data or, upon further investigation, technically
possible.

2. A change in resulting acceleration, i.e. the length
of the resulting acceleration vector, of less than
0.1 m/s3. This prerequisite was chosen to filter
out two possible situations: First, the bike not
moving along the test route, but lateral rolling, like
tilting sideways, or otherwise being slightly moved
by mounting, operating the sensors or similar
situations. And second, erroneously repeated
GNSS localization yielding a speed of zero mid-
ride.

The remaining accelerations were grouped by test
route and sensor. The filtering by test route was
done to account for possible changes in exact mount
configurations between the data collected at different
times. For each sensor-route pair, a reference vector
−→r = (x, y, z) was chosen by taking the median of
the remaining values in x, y and z direction of the
accelerometer. The median was chosen to dampen
the effect of possibly missed outliers. Subsequently,
following Zang et al. (2018), the vertical component av
of each measured acceleration −→a = (xi, yi, zi, ) was
derived by projection onto the unit vector in vertical
direction using Equation (1).

av (
−→a ) =

xi ∗ x + yi ∗ y + zi ∗ z√
x2 + y2 + z2

(1)
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3.2.2 Filtering and smoothing of speeds

With the vertical acceleration calculated for each
measurements, the collected data points were filtered
based on their speed. First, any measurements with
calculated speeds above 40 km/h were discarded. The
remaining speeds were smoothed using a rolling cosine
window with a width of five measurements in order
to dampen the effect of slight GNSS localization
errors. Next, measurements with smoothed speeds
below 15 km/h were discarded. Finally, measurements
with a change in resulting acceleration since the last
measurement above 5 000 m/s3 were removed, as they
are also most likely erroneous. On the one hand, this
removes the stops at the beginning and end of each
test ride as well as stops at traffic lights and similar.
On the other hand, measurements collected at speeds
below this threshold are undesirable as speed has a
major impact on the measured vertical accelerations.
At higher speeds, identical vertical displacements yield
higher accelerations as the bike is subjected to them
in a shorter period of time (Gao et al., 2018; Olieman
et al., 2012). Thus measurements should be collected
at a constant speed.

3.2.3 Methods

As justified in section 2, five works and their respective
roughness calculation methods were chosen for
comparison. In section 2, the general approach of
each of these works were outlined. In this section, their
roughness calculation methods are described in detail,
with an additional focus on the reimplementations used
for this work.

Bíl et al. (2015) calculate their DCI according to
Equation (2). av represents the vertical acceleration.
n represents the number of vertical accelerations greater
than 1 g in one second. They grouped the accelerations
by seconds as this was the sampling frequency of their
GNSS sensor, allowing them to calculate one DCI
value per GNSS point. As we are only interested
in calculating metrics per segment, we grouped the
accelerations by segments instead, with n consequently
being the number of accelerations greater than 1 g
per segment. The avi are therefore exactly these
accelerations. The gravitational acceleration of the
earth is not the same around the globe. Several standard
approximations of 1 g exist, with 9.81 m/s2 often used
for manual calculations and 9.80665 m/s2 often used
in engineering. However, as we calculated separate
gravitational reference vectors per route-sensor pair

anyways, we used the length of these as values for 1 g.
Thanks to their concise description of the roughness
calculation, we are confident in our reimplementation
of their method.

DCI =

(
1

n

n∑
i=1

a2vi

)−1

(2)

Zang et al. (2018) use double integration of the
absolute value of the vertical acceleration av divided
by the traveled distance S to calculate the vertical
displacement according to Equation (3). To this
end, tstart and tstop are defined as the first and
last timestamp of measurements belonging to a given
test segment, in the original work of 20 m length.
They consider their assessment to closely reflect the
IRI (Sayers &Karamihas, 1998), defined as the vertical
displacement, typically measured in mm/m. Zang et al.
(2018) point out, that distance calculation from speeds
and timestamps might be more precise than from
localizations. However, as we did not undertake
any direct speed measurements, we used the fixed
segment length for S. They do not report the integration
approximation they used for the discrete acceleration
values. We decided to use cumulative trapezoid
integration for the inner integral and Simpson’s rule for
the outer integral. This combination was chosen as it
yielded the highest agreement with the other methods
and was therefore considered the best possible variant
of their described method. With the travel distance
calculation done differently and the assumptions on
integration, it is difficult to tell how close our results
are to ones achieved using their complete system.
However, we remain confident that the general concept
is reproduced well by our reimplementation.

IRI =

∫ ∫ tstop
tstart

|av| (dt)2

S
(3)

Of the methods compared in this work, the approach
by Gao et al. (2018) is the only one taking all
accelerometer axes into account beyond extracting
vertical acceleration. Their approach is based on
ISO 2631-1 (ISO, 1997), therefore they report to
weight the accelerations in the frequency domain.
Unfortunately, they do not report the corresponding
weighting parameters. Therefore, this work uses
unweighted accelerations for the reimplementation.
It may be discussed, whether this still allows for
comparability of the method, however the information
Gao et al. provided did not allow for a more detailed
reimplementation. For each accelerometer axis, Gao
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et al. (2018) calculate the root mean square value
(Equation (4)). Subsequently, the euclidean norm of the
3D vector consisting of these root mean square values
per axis ai is calculated for the resulting acceleration
value Equation (5). This equates to calculating the
resulting vector from three root mean square average
vectors along the accelerometer axes and is actually the
approach recommended by ISO 2631-1.

ai =

√√√√ 1

T

t=T∑
t=0

a2i (t) i ∈ x, y, z (4)

av =
√

a2x + a2y + a2z (5)

Nuñez et al. (2020) use a straightforward root mean
square (RMS) of vertical acceleration av as can be seen
in Equation (6). They report calculating this RMS per
5 m section. This work uses the same approach only
testing different segment lengths. Notably, Nuñez et al.
(2020) do not consider this RMS the final assessment
but based on ISO 2631-1 (ISO, 1997) they define six
vibrations classes as listed in Table 1. For their BEQI,
they take additional factors like traffic density, bicycle
parking or accessibility into account. However, as this
work is focused on surface quality assessment only the
RMS-based roughness rank is used for comparison.

RMS =

√√√√ 1

N

N∑
i=1

a2vi (6)

Kranzinger & Leitinger (2021) are the only authors
not working directly with the accelerations but their
first order derivative, the so-called jerks. Furthermore,
unlike the works by Bíl et al. (2015), Gao et al. (2018)
and Nuñez et al. (2020), they do not use any variant
of the root mean square of the derived values. Instead,
they first calculate two parameters for each section:

1. The average jerk value per segment, measured in
m/s3.

2. The share of heavy jerks per segment. In their
original work they considered a ‘heavy jerk’ any
jerk above 1 200 m/s3. As this value is highly
dependent on the used bicycle, IMU, tire pressure,
mounting position and solution, and so on, it is
not used in this work. Instead a new threshold
is defined, using the 70th-percentile of jerk values

per sensor. The 70th-percentile was chosen with
the clustering in mind. As it yielded a wide
spread of heavy jerk shares, a truly two-dimensional
clustering was possible.

The resulting average jerk value and heavy jerk share
per section are then used as input to a k-means++
clustering algorithm (Arthur & Vassilvitskii, 2007).
The number of clusters is fixed to four, and 20
runs with differing cluster center initializations are
performed. The best resulting cluster centers are kept
for later clustering. Apart from the changed heavy jerk
threshold, we consider this implementation a very close
reimplementation of the described method.

3.3 Comparison of results

The stated goal of this work as outlined in section 1 is
to compare different sensor-method combinations and
segment lengths used for surface roughness estimation.
To this end, mathematically sound comparisonmethods
are required. While numerical assessments are fairly
easy to compare assuming that the assessments are
normalized first, the mixture of numerical and ordinal
assessment scales proved difficult to compare. For
stability, no possibility of comparing numerical and
ordinal assessment methods directly was found.
Comparing the numerical assessments to each other
was straightforward using the coefficient of variation.
Comparing ordinal assessments is difficult, as one
must not make the mistake of considering classes
equally spaced. However, a suited measure for ordinal
dispersion was found that allows for comparison
of stability between ordinal methods and their
combination with different sensors and segment
lengths. Regarding the reliability, defined as the
agreement of any given method with an ensemble of
all considered methods, rank correlation was used to be
able to compare all used methods to each other.

3.3.1 Stability calculation

The stability of assessments using a certain sensor-
method combination is a metric whether applying this
combination to the same test route multiple times
will yield the same or differing results. This is
of interest mainly to decide how many test runs of
a certain sensor-method calculation are necessary to
get a result that additional test runs are unlikely
to change much. Therefore, the average dispersion
over all test segments is used as stability measure.
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Table 1 Expected perception depending on the vertical accelerations root mean square per segment as reported by Nuñez
et al. (2020)

RMS in m/s2 < 0.315 0.315 – 0.63 0.63 – 1 1 – 1.6 1.6 – 2.5 > 2.5
Expected
perception

Not
uncomfortable

A little
uncomfortable

Fairly
uncomfortable

Uncomfortable Very
uncomfortable

Extremely
uncomfortable

Unfortunately, to the best of the authors’ knowledge,
there is no common dispersion metric for numerical
and ordinal scales. Thus, two different metrics had to
be adopted, making results for ordinal and numerical
methods incomparable. However, dispersion between
different numerical or ordinal methods as well as
between sensors combined with the same method are
still possible.

For numerical assessment methods, the coefficient of
variation CV is used as dispersion metric. As shown
in Equation (7), it is calculated as the ratio of the
standard deviation δ to the mean µ of the ratings per
test segment. Also called the Normalized Root-Mean
Square Deviation or relative standard deviation, it is a
widely used standardized dispersion measure.

CV =
δ

µ
(7)

For ordinal assessment methods, ordinal dispersion as
defined by Blair & Lacy (2000) is used. Equation (7)
shows the calculation of l2, a measure of concentration.
For dispersion, the inverse 1 − l2 is used. In the
formula, Fi denotes the cumulative frequency, or sum
of its own frequency and that of all lower classes, of
the i-th class. From cumulative frequencies of all k
classes but that of the highest class, 0.5 is subtracted, the
result squared and these values summed. The highest
class’ cumulative frequency is dropped as it is always
1. Subtracting 0.5 yields a metric independent of the
center of the distribution: if most samples are rated
low, a cumulative frequency of 0.5 is reached fast,
yielding increasing positive values for Fi − 1

2 . If most
samples are rated high, a cumulative frequency of 0.5 is
reached slowly, yielding relatively high negative values
for Fi − 1

2 . Squared these become equal, yielding a
method only dependent on the width, not the center of
the distribution. k−1

4 is used to get a normed metric.
It is the highest possible value of the numerator for
an ordinal metric with k possible classes. The highest
possible concentration wouldmean all values in exactly
one class. The numerator would then be a sum k − 1-
times either

(
0− 1

2

)2 or (1− 1
2

)2, exactly the value of

the denominator.

l2 =

∑k−1
i=1

(
Fi −

1

2

)2

(k − 1)

4

(8)

3.3.2 Reliability calculation

The reliability of assessments made using a certain
sensor-method combination is a metric whether
applying this combination to a certain test route is likely
to produce similar results as applying an ensemble of
other combinations to the same test routes. This is of
interest to decide whether one or the other method
is more likely to produce a ‘realistic’ assessment
of a given test route, assuming that an ensemble of
establishedmethods should produce a good assessment.
As absolute values of different numerical and ordinal
scales are hard to compare, relative assessments are
compared instead. To this end, Spearman’s rank
correlation coefficient (Corder & Foreman, 2014) is
calculated as follows:

1. First, for each predefined segment length, the
assessments per sensor-method combinations are
normalized.

2. Next, an average assessment of all sensor-method
combinations is calculated for each segment.

3. Third, both the assessments per sensor-method
combination as well as the average are ranked.

4. Last, Spearman’s rank correlation is calculated
between each sensor-method combination, all other
combinations, and the average of all methods.

The resulting values represent the degree to which
any given sensor-method combination will rank the
test segments surface roughness in a similar order
compared to the other methods and the ensembles
average. The underlying assumption is that, while
the absolute ratings of any method might depend on
a multitude of factors, the ranking of segments should
be comparable for any method considered to be able to
produce a good assessment of surface roughness.
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4 Results

The surface roughness assessments of different
combinations of sensors, calculation methods, and
segment lengths were compared using the methods
described at the end of the previous section. The
results are presented subsequently, starting with the
stability of each method across the two sensors and
four segment lengths. Next the reliability, defined as
the agreement with the other methods and an averaged
assessment of all methods, measured using Spearman’s
rank correlation coefficient, is discussed. Finally, some
qualitative examples are presented, and the findings
summarized and interpreted.

4.1 Stability

As pointed out in section 3 the stability of numerical
and ordinal assessment methods are not directly
comparable. As to the best of the authors knowledge,
no dispersion metric applicable to both types of scales
exists. However, to portray the effects of sensor and
segment length, they are still displayed side by side
in Figure 5. At the top of each of the four box plots,
the method by Kranzinger & Leitinger (2021), denoted
‘Kranz.’, and the BEQI (Nuñez et al., 2020), the two
ordinal methods, are shown. As described, the other
three methods yield numerical assessments. As can
be seen, the used method has the biggest impact on
dispersion, consistent across sensor type and segment
length.

Of the ordinal methods, the BEQI is more stable
and its dispersion is less impacted by sensor type
than the assessment using the method by Kranzinger
and Leitinger. Notably, the method by Kranzinger
and Leitinger appears to be the least impacted by
chosen segment length. Of the numerical methods,
the DCI shows exceptionally stable results across both
sensors and all segment lengths. The IRI, calculated
as described by Zang et al. (2018) shows a very high
dispersion, indicating highly unstable results across
test runs. The DCC is somewhat in between, without
particularly stable or unstable results. However, among
the numerical methods it is least impacted by segment
length.

Next, the segment length has a major influence on
dispersion. Unsurprisingly, longer segments tend to
yield more stable results, except for the IRI calculation
as described by Zang et al. (2018). This was to be
expected, as the longer the section is, the smaller is

the impact of little differences in the actually driven
path. For short segments, even single swerves hitting
or avoiding any unevenness have a major impact. This
is a disadvantage of any IMU-based method: only
the surface directly beneath the tires can be assessed.
Notably, as there are about 20 times less segments with
a length of 100 m than with a length of 5 m, there are
also a lot less outliers for longer segments.

For shorter segments, the assessments made using the
XSens are in general less stable than the ones using
a smartphone, with the exception of the combination
with the DCI. This also indicates a bigger dispersion in
the measured accelerations themselves. However, for
longer segments, this effect disappears, likely due to
the described ‘smoothing’ effect of adding more data
points.

In conclusion, the most stable numerical assessments
are achievable using the combination of dedicated
industrial-grade IMU and the DCI method by Bíl et al.
(2015). However, especially when using the DCI, the
effect of the used sensor is neglectable. The least stable
assessments are produced when calculating the IRI as
described by Zang et al. (2018) based on measurements
by the dedicated IMU. Of the ordinal methods, the
BEQI is more stable, especially for shorter segments
and when using the dedicated IMU for acceleration
measurement.

4.2 Reliability

As described in section 3 the reliability of each method
is defined as its agreement with the other methods, as
well as an assessment averaged from all considered
methods. Rank correlation is used to be able to properly
compare numerical and ordinal assessment methods.
All sensor-method combinations are correlated against
each other as well as against the average assessment
calculated as described in section 3. The correlations
are depicted for the different segment lengths in
Figure 6 to Figure 9. The resulting reliability metric
ranges between 1 for total accordance, as seen in the
correlation of each combination with itself; and -1 for
exact opposite ranking of sections.

Notably, the DCI (Bíl et al., 2015), DCC (Gao et al.,
2018), and BEQI (Nuñez et al., 2020) are all highly
correlated. This is a result of them all being based
on the root mean square of accelerations. The DCI
only uses downward accelerations > 1 g, the DCC takes
accelerations from all accelerometer axes and the BEQI
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Figure 5 Distribution of the dispersion per segment with respect to sensor type, roughness calculation method combination
and segment length (the grey highlighting marks the two ordinal methods)

projects the results onto an ordinal scale. But beyond
that, they all use a root mean square of accelerations
for vibration assessment as recommended by ISO 2631-
1 (ISO, 1997).

Figure 6 Spearman’s rank correlation coefficients matrix
for a segment length of 5 m

Figure 7 Spearman’s rank correlation coefficients matrix
for a segment length of 10 m

This yields a certain problem for taking the correlation
with the averaged assessment as a reliability measure,
as these three methods might appear disproportionately
reliable. For future applications of this comparison
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Figure 8 Spearman’s rank correlation coefficients matrix
for a segment length of 20 m

Figure 9 Spearman’s rank correlation coefficients matrix
for a segment length of 100 m

approach, this might be alleviated by a more diverse
selection of methods. For this work, the presented
correlations need to be interpreted with due care.

Concerning the effect of segment length, longer
segments yield a generally higher correlation of
different methods. Especially between the 5 m
segments and the 10 m segments, correlation
improved for the majority of pairwise compared
sensor-method combinations. Increasing the length
further yielded small gains for 20 m segments, and
somewhat inconclusive results for 100 m segments.
Contrastingly, the correlation of the IRI, calculated
as described by Zang et al. (2018), decreased with
segment length. This indicates some kind of difficulty
this method encounters with longer segments.

As with stability, the impact of the two different sensors
decreases with segment length. Also, it is again
highly dependent on the used roughness calculation
method. The three aforementioned, root mean square
based, methods show high correlations with themselves
and towards each other for both sensors used. The
IRI ranking is less correlated to the IRI ranking
using the other sensor, however still more than to
any other method. In general, the IRI is actually
negatively correlated to all other methods, indicating
some major problems of either the method or the used
reimplementation.

The method by Kranzinger and Leitinger is most
interestingly stronger correlated to other methods than
to itself using another sensor, especially for longer
segments. Its overall correlation to other methods is
rather weak, although increasing with segment length.
However, as mentioned three of the methods are based
on the same fundamental concept of a root mean
square of accelerations. The method by Kranzinger and
Leitinger on the other hand is based on a clustering
by mean jerks and share of heavy jerks. Jerks are
defined as the derivative of the measured vertical
acceleration. Presumably, this approaches’ sensibility
to few very high accelerations is different from the root
mean square based approaches. Therefore, comparison
to another method considered sound in itself would
be required to achieve a trustworthy estimation of
its actual reliability for surface roughness assessment.
Interestingly, this method is hardly correlated to itself
using a different sensor. Presumably, this is the result
of the different heavy jerk thresholds and cluster centers
calculated for the two sensors.

4.3 Qualitative example

As a minimal qualitative example of results, Table 2
lists the ranks of all methods for the on average best
and worst assessed segments per segment length and
used sensor. As can be seen, the agreement of methods
for XSensmeasurements on these segments is generally
high, especially for the good sections. Interestingly,
the agreement decreases with segment length. As with
stability and reliability, the IRI does not fare too well,
again worse for longer segments. The ranks of the two
ordinal methods in the last two columns are expected to
be less clear, as for all segments in one class, an average
rank is used. This also yields the 0.5 ranks.

For accelerationsmeasured using a smartphone, there is
less of an agreement, especially for the good segments.
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Table 2 Ranks of the on average best and worst sections, calculated as described in 3.3.2, per segment length and sensor for
all methods

Segment
length

Sensor Average rank DCI rank
(Bíl et al.,
2015)

IRI rank
(Zang et al.,

2018)

DCC rank
(Gao et al.,
2018)

BEQI rank
(Nuñez et al.,

2020)

Kranz. rank
(Kranzinger &
Leitinger,
2021)

5 Smartphone 1.0 (Best) 328.0 37.0 158.0 200.0 137.0
1 106.0
(Worst)

1 105.0 123.0 1 106.0 1 063.5 690.0

XSens 1.0 (Best) 1.0 12.0 1.0 2.0 455.5
1 080.0
(Worst)

1 071.0 791.0 1 072.0 1 041.0 1 073.0

10 Smartphone 1.0 (Best) 146.0 19.0 60.0 88.5 54.5
559.0 (Worst) 558.0 318.0 557.0 536.5 334.0

XSens 1.0 (Best) 1.0 6.0 1.0 1.0 244.5
550.0 (Worst) 547.0 425.0 547.0 529.0 547.0

20 Smartphone 1.0 (Best) 42.0 124.0 49.0 40.5 21.0
285.0 (Worst) 283.0 143.0 283.0 274.5 163.5

XSens 1.0 (Best) 1.0 2.0 1.0 1.0 129.5
280.0 (Worst) 265.0 50.0 263.0 270.0 279.5

100 Smartphone 1.0 (Best) 13.0 49.0 21.0 23.5 1.5
57.0 (Worst) 56.0 23.0 56.0 56.0 30.0

XSens 1.0 (Best) 5.0 9.0 4.0 7.0 28.0
57.0 (Worst) 57.0 19.0 56.0 56.0 56.5

Interestingly, for the good sections, the method by
Kranzinger and Leitinger appears to yield better results,
however this might also be a misinterpreted effect
of the class distribution of the two ordinal methods.
Furthermore, the best segments all feature asphalt in
good condition, while the worst sections all feature
rough cobblestone surfaces. This confirms the general
assessments of the used methods. However, 16 out
of about 4 000 segments can at best be used to get a
general idea of the characteristics of each method. For
proper analysis of the methods, quantitative approaches
as described are required.

4.4 Discussion

The described reliability, stability, and exemplary
qualitative results allow for some deductions. First and
foremost, the selected method has the biggest impact
on the resulting assessment, regarding both reliability
and stability, well above the impacts of used sensor
and segment length. This supports the ongoing research
into better assessment algorithms. Furthermore, it sets
the focus for any attempts at assessing infrastructure
surface quality in a given area.

Second, segment length had a bigger impact on
reliability than on stability. This indicates that using
several measuring runs is a well suited approach to
stabilize the outputs of the considered methods. As
a side effect, the impact of the different sensors was
less visible on reliability than on stability. However,
it still mostly depended on the used method. Overall,
except for the IRI, longer segments yield more similar
assessments both per test run and also when comparing
methods. On the other hand, they also decrease spatial
resolution and might impede the detection of small
problematic areas by a ‘smoothing’ effect.

Furthermore, the effect of different sensors, although
dependent on segment length, can be considered to have
a minor impact on the resulting assessment. Especially
for the three root mean square based methods, results
using either sensor were very comparable. For the
IRI, the generally bad results are worse when based
on smartphone measurements. Regarding the method
by Kranzinger and Leitinger, it is interesting to note
that there is little correlation when applying the method
to the acceleration data collected using either sensor.
However, as noted it is the onlymethodwith parameters
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tuned to each sensors measurements.

Last, the coherent results of both the stability and
reliability measures indicate the chosen comparison
methods to be well suited for the task at hand. This
supports the assumptions leading to their selection and
might be a useful finding for any future works aiming
to compare their own, newly developed, methods
to existing ones. As the described methods are
mathematically well defined and straightforward to
implement, little effort is needed to apply them in any
such future works.

5 Conclusions

The aim of this work, as stated in the introduction,
is to compare the assessments of the selected surface
roughness calculation methods and sensors in order to
provide recommendations for such assessments. To
this end, acceleration measurements were conducted
and the collected measurements assigned to different
length segments. Based on these, roughness metrics
were calculated using reimplementations of the
selected metrics. These were then compared using
specifically developed comparison methods. The
results concerning stability, reliability, and results
on selected segments were presented in the previous
section. These yield the following recommendations
for the usage of certain sensors and methods for surface
roughness assessment.

First and foremost, the DCI developed by Bíl et al.
(2015) yielded the most stable results across both
sensors and all segment lengths, but especially for
shorter segments. It was among the least affected by
sensor selection and also among the highest correlated
with all other methods. Furthermore, the method
description in the original work is commendably
concise and the used algorithm is straightforward and
easy to implement. Therefore, the DCI emerges from
this comparison as the recommended approach to assess
surface roughness.

Next, the method to calculate the IRI as described
by Zang et al. (2018) yielded very unstable results,
which were also not correlated well with the other
methods. Therefore, this method should not be used
for roughness calculation unless two prerequisites are
met: First, either through communication with the
original authors or by extensive own exploration, a
stable, reliable implementation of the method is found.
To this end, the exact implementation of the double

integration as well as possible filtering steps would
need to be examined carefully. And second, high
qualitymeasuring equipment firmly attached to the bike
yielding as little noise as possible needs to be used to
alleviate the problem of high outlier sensibility. As
these are two considerable obstacles, themethod cannot
be recommended despite its solid foundation in road
maintenance and inherent elegance.

If an ordinal assessment is required, the BEQI (Nuñez
et al., 2020) is both more stable and better correlated
to the other methods than the method by Kranzinger
& Leitinger (2021). However, as the BEQI only
splits the root mean square of vertical accelerations at
certain thresholds another viable option emerges: First,
calculate the DCI as described by Bíl et al. (2015), then
select fitting thresholds for an ordinal assessment based
on the results.

The DCC as described by Gao et al. (2018) is neither
particularly stable or unstable nor reliable or unreliable.
It is therefore not recommended before or against,
but considered a solid variant of ISO 2631-1 (ISO,
1997). This ISO standard however should at least
be considered by any attempt at developing a surface
roughness assessment method based on acceleration
measurements.

Choosing the right segment length is another important
consideration. As expected, the stability generally
increased with longer segments. So did the correlation
between methods, indicating a high reliability of
assessments on longer segments. On the other hand,
spatial resolution is lost and short problematic sections
might be missed because of the ‘smoothing’ effect of
longer segments. With the differences in correlation
between the segment lengths in mind, 5 m and
possibly shorter segments should only be chosen where
absolutely required as they yield both unstable and
somewhat unreliable results. Segments of 10 m to 20
m are both reasonable, so selection should be made
based on the aforementioned criteria. Longer segments,
especially 100 m and beyond yield limited gains in
reliability and stability, and should only be used if the
assessments need to be based on acceleration data of
questionable reliability for some reason.

The impact of the different sensors on both stability
and reliability is neglectable compared to both method
and segment length. Therefore, a handlebar mounted
smartphone can be concluded to be sufficient for
bicycle infrastructure assessment. This furthermore
confirms the applicability of smartphone-based crowd
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sourcing approaches for large scale infrastructure
assessment.

Using acceleration measurements for roughness
estimation is a well established and wide spread
approach. Still, it is not without limitations that
should be considered, especially when attempting large
scale infrastructure assessment. These limitations, as
described in detail in different sections throughout this
document, are as follows: First and foremost, each
test ride only captures the roughness directly beneath
the tires. Therefore, any reliable assessment needs
to be based on multiple rides on the same routes.
Next, the measured accelerations are highly dependent
on the type of bicycle used, the weight of the rider,
the tire pressure, and the riding style, especially the
speed. Thus, data from different sources is not directly
comparable. This might be mitigated by sufficiently
large numbers of measurements to work with averages
instead of single test rides. Finally, using IMUs
for roughness estimation does make distinguishing
different reasons for roughness difficult. Cobblestone
is barely different from unintentionally rough surfaces,
manhole covers are hard to distinguish from potholes.
If the reasons for roughness are to be considered, video
based approaches should be considered.

The comparison approaches developed for this work
proved usable and conclusive. One caveat is the
effect of multiple similar methods in the comparison,
increasing the apparent reliability of these works.
However, this can be alleviated by careful selection of
comparison methods. At the very least, a feasible way
of comparing the reliability of ordinal and numerical
assessment methods was presented. Unfortunately, the
stability can only be compared among either ordinal
or numerical assessments. Nonetheless, the presented
approach constitutes a solid tool to select fitting
segment lengths for surface roughness assessment
methods.

Based on the presented research, several possible
future research topics arise. The most obvious
and easily achievable one would be to apply the
comparison to additional methods from literature.
However, the authors believe to have chosen reasonable
representatives for the most common approaches, and
therefore expect little additional value from doing so.
More interestingly, based on the consideration that a
handlebar-mounted smartphone is sufficient for surface
roughness assessment, the effect of using different
bikes could be properly quantified. Subsequently,

suitable normalization methods could be developed to
further advance crowd sourcing approaches. Lastly,
the developed comparison methods could be used
to develop yet more stable and reliable assessment
approaches for high precision roughness mapping.
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