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Abstract: Automated Driving Systems (ADS) are aimed to improve traffic efficiency and safety,
however these systems are not yet capable of handling all driving tasks in all types of road conditions.
The role of a human driver remains crucial in taking over control, if an ADS fails or reaches its
operational limits. Takeover performance of human drivers in authority transitions is typically assessed
by means of the takeover time (TOT) taken within an available time budget (TB). This approach
assumes a uniform perception and reaction time of human drivers in ADS disengagements, and does
not include the time needed to execute the actual driving maneuver required to ensure safety. This
paper aims to develop and test a set of new indicators to reflect takeover performance and its safety
attributes, namely the ‘time to control’ (TC) and the ‘safe time budget’ (STB), in which the actual task
execution (i.e. braking) time is taken into account, in addition to the perception and reaction time. It
also proposes new thresholds for identifying critical conflicts in takeover situations and assessing the
safety of authority transitions. A traffic simulation experimental setup is used with mixed traffic of
conventional vehicles and ACC/CACC platoons in order to test these indicators and thresholds. The
results suggest that the time difference between TC and STB is a more sensitive and potentially more
realistic safety indicator, as it may capture the variability of driver behavior in takeovers and identify
critical conflicts, as well as virtual crashes, that would not have been identified by the previously used
indicators (TOT and TB). Takeover performance worsens when the speed difference of the vehicles
involved is higher, and the initial speed of the rear vehicle is higher. These findings can be useful
towards a more dynamic design of takeover request strategies.
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1 Background and objectives

An important challenge for researchers and
professionals related to automated vehicles is to
ensure that the operators of these vehicles are capable
of perceiving not only the capabilities, but also
the limitations of the automated systems (Flemisch
et al., 2017).Until Automated Driving Systems (ADS)
become capable of performing all types of driving
tasks in all types of road conditions, human drivers
will be responsible for taking control when the system
fails or reaches its operational limits (Varotto et al.,
2015). Several studies underline that, as the level of
automation increases, the role of the driver remains
crucial, and traffic safety is increasingly dependable on
the combination of the performance of the human driver
and the automation (Merat et al., 2012; Petermann-
Stock et al., 2013).

In order to be able to evaluate the safety of new vehicle
systems for automated driving, traffic simulations can
be used, since most of these systems are not yet widely
implemented in real traffic and accidents don’t occur
often in practice. Also, when an accident has happened,
often the exact cause is unknown. Traffic simulation
can address this gap, however it requires realistic
modelling of both the human driver, the automated
vehicle systems, as well as reliable safety indicators.
For safety assessment, the moment when the driver
needs to take over control from the automated system is
crucial. In order to assess how (un)safe such a takeover
is, an indicator is needed that reflects the (un)safety of
that specific situation.

Existing research has proposed taxonomies for such
transitions of control, depending on who initiates the
transition and who is in control after the transition.
There are four types of transition (Lu et al., 2016; Lu
& Winter, 2015; Klunder et al., 2009):

1. Driver-Initiated Driver Control (DIDC) which
occurs when the driver voluntarily selects to
deactivate the automated system and resume back
control, e.g. for overtaking;

2. Driver-Initiated Automation Control (DIAC) in
which the driver activates the system, e.g. when
entering a highway;

3. Automation-Initiated Driver Control (AIDC),
where the automated system initiates the transition,
because it reaches its limitations; and

4. Automation-Initiated Automation Control (AIAC),
where the automated system initiates the transition,

e.g. because it is detected that the driver is impaired
or unable to handle the situation downstream.

This research focuses on the third type of transition,
which is considered to be the most complex and
safety critical one, as it involves mechanisms of
human adaptation in emergency scenarios under limited
time. The most common situations for an AIDC
takeover are when there is a sensor failure, when
the system reaches its boundaries (in terms of speed,
acceleration/deceleration), e.g. to avoid a stopped
vehicle, when the vehicle exits its operational design
domain (ODD), e.g. approaches an off-ramp, or when
the system deliberately initiates a takeover in order to
increase the alertness of the driver.

By that time, the system sends a warning (takeover
stimulus) to the human driver, who has to take over
within a certain time to ensure safe operations. Such
a time sequence has been described by Zhang et al.
(2019): the time from the moment of the warning,
until the moment of driver’s first intervention, is called
Take Over Time (TOT). The last moment at which the
driver can take action is called ‘system limit’. The time
between a warning and the system limit is called Time
Budget (TB).

Typically, when the Take Over Time is smaller than
the Time Budget, the situation is considered to be
safe. However, comparing the TOT with the TB is
not always a reliable safety metric, as both metrics
are dependent on the driver’s perception and reaction
times. These times are usually taken as mean values,
not accounting for the variability in human information
processing. Moreover, in certain conditions, it may
be the case that after the driver took over, the
deceleration force applied, or the maneuver performed,
were not sufficient to avoid a collision. While in
traffic simulation models this type of ‘poor’ driver
performance is seldom considered (Calvert & van
Arem, 2020; Van Lint & Calvert, 2018), in reality
drivers may not perform in an optimal way due to
e.g. misconception of the situation, wrong cognitive
processing of the available information, or simply poor
task execution (Kyriakidis et al., 2017). Both TOT and
TB metrics are not designed for capturing that ‘poor’
and potentially unsafe task performance. Therefore, a
simulation experiment in which TOT and TB satisfy
the aforementioned condition (TOT < TB), may not
necessarily ensure that critical situations will be evaded
in practice.
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This research aims to develop and test a set of new
Key Performance Indicators (KPIs), in order to estimate
driver performance and its safety consequences more
accurately. More specifically, we propose two new
metrics for takeover performance; in these metrics, in
addition to the perception and reaction time, the actual
task execution time is taken into account. To test
these metrics, we use a traffic simulation experimental
setup with mixed traffic of conventional vehicles
and Cooperative Adaptive Cruise Control (CACC)
platoons. The simulation output is used to calculate
the share of critical conflicts and virtual ‘crashes’ on
the basis of the new proposed metrics. The results
are analysed with respect to automated vehicles’ (AV)
penetration rate, and vehicle class.

The remainder of this paper is structured as follows:
section 2 presents a literature review of simulation
studies on mixed traffic, as well as a review of takeover
performance in automated driving, its determinants
and its safety implications. Section 3 presents
the methodology of this research, including the
development of the new metrics. Section 4 includes
the experimental setup of the simulation. Section 5
presents the results of the analysis. Finally, section 6
includes a discussion on the results and limitations of
the study; conclusions are drawn in section 7.

2 Literature review

For many AV applications, the safety impacts in
mixed traffic (conventional and automated vehicles in
different penetration rates) are assessed by means of
traffic simulation, e.g. Arvin et al. (2020); Cacciabue &
Carsten (2010); Dahl et al. (2018); Liu et al. (2018). A
number of SurrogateMeasures of Safety (SMoS) (often
also referred to as SSM—surrogate safety measures)
are typically used to assess the criticality of virtual
conflicts observed in the simulated network. These
include Time-to-Collision (TTC), Post Encroachment
time (PET), Deceleration Rate (DR), maximum speed,
speed differentials or variations of the above (Gettman
& Head, 2003).

Table 1 summarizes a number of recent simulation
studies on the safety of CACC in mixed traffic. The
selection criteria for the summarized studies were
studies of the last five years published in a scientific
Journal, with a clear safety focus. A detailed review
of these studies is beyond the scope of this paper,
for this the reader is referred to Papadimitriou et al.
(2022). It is observed that the majority of studies, by

using different SMoS and thresholds, report significant
safety benefits from the increase in AV penetration
rates in the simulated networks, including highways
and junctions, e.g. Papadoulis et al. (2019); Rahman &
Abdel-Aty (2018); Virdi et al. (2019); Ye &Yamamoto
(2019). One study (Sinha et al., 2020) found little
or no safety benefits for conventional vehicles from
the increased AV penetration rate, and argued that
AV ‘behaviour’ thresholds derived from conventional,
human naturalistic driving should be revisited.

Indeed, the safety thresholds used in these simulation
studies, e.g. for deceleration, TTC or PET, vary among
studies are not standardized in general. It is noted that
none of these studies examine specifically the impact
of authority transitions on the network safety. Whilst
SMoS are available (and still developing) for regular
driving, their counterparts for control transitions are
still in early stages of development.

There are several design factors and human factors that
are involved in a safe authority transition. These have
been extensively reviewed in recent review studies and
meta-analyses (Winter et al., 2014; Zhang et al., 2019)
and only a summary of main findings is presented in
this paper (see Table 2).

Many studies have shown that in low level automation,
where drivers are still expected to stay engaged in
the driving task, reduced cognitive awareness is still
observed. The required shift in attention is demanding
by itself, and prone to errors and delays, especially
if a secondary task is involved (Borojeni et al., 2016;
Calvert et al., 2020; Merat et al., 2012).

Several studies have examined the impact of the
modality of a takeover request (TOR) on takeover
performance, e.g. ‘why messages’ (describing reasons)
and ‘how messages’ (describing action) in Koo et al.
(2015), visual, auditory or tactile warnings in Baldwin
& Lewis (2014); Naujoks et al. (2021); Politis et al.
(2018), peripheral light displays in Borojeni et al.
(2016), comparison of the modalities of the driving
task and the non-driving task in distracted driving
in Petermeijer et al. (2016). In the meta-analysis
of Zhang et al. (2019) it was found that when auditory
or tactile takeover request was used, the difference in
TOT was on average -1.41 s.

In the meta-analysis of Zhang et al. (2019), TOT varied
from 0.69 s to 19.79 s. The mean TOT was 2.72 s with
a standard variation of 1.45 s. The results greatly vary
depending on several drivers and other factors, such
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as prior experience and time budget magnitude. Time
Budget in particular was found to strongly affect TOT,
resulting in a difference of +1.35 s. Prior experience
also influenced TOT (drivers showed on average -1.00
s TOT when they were taking over for a second time).
On the other hand, using a handheld device or being
involved in a visual non-driving task increased TOT by
+1.33 s and +0.29 s respectively. High traffic density
had a marginally significant effect of +0.49 s on TOT.

The above literature review indicates that the
heterogeneity in human perception and reaction time
in different situations may result in large variability in
TOT. A large share of this distribution is far beyond
the desired time gaps that an advanced CACC system
can achieve (i.e. 0.6 to 0.9 s). This means that, for
instance, in a hypothetical immediate full stop of the
front vehicle, a collision would be inevitable, as the
available time for a driver to react is not sufficient.

As also noted by Zeeb et al. (2016), TOT may not
be the most important element when assessing the
performance of an authority transition, because some
studies have shown that shorter TOT may come with
lower quality. The general term ‘takeover quality’
(TQ) includes different longitudinal and lateral control
indicators, but also driver factors such as hazard
perception and situational awareness. As described
in the review of Papadimitriou et al. (2020), TQ has
been found to be a better safety indicator in terms of
lateral control, number of steering corrections, and in
non-emergency transitions, whereas other indicators
(e.g. TOT) could not capture the differences between
emergency and non-emergency situations. Ruscio
et al. (2015) underline that a driver’s perceiving and
cognitive awareness affects his ability to mentally
process a takeover request, and thus the takeover
performance too; therefore, the standard approach that
uses reaction times (TOT < TB) seems to be inefficient
to ensure the safety of a transition, despite the fact that
it is, in general, a good estimate regarding the criticality
of incidents.

Overall, existing studies do not adequately link TOT
with the actual safety consequences; for instance, it is
not known how TOT correlates with the SMoS that
can be empirically observed through traffic simulation.
On the other hand, the existing simulations of CACC
and mixed traffic use several common SMoS with
different thresholds among studies, but do not test the
conditions of authority transition. Hence the reported
safety benefits do not cover this safety-critical case. In

this paper, we argue that, by taking into account the
braking time of the driver, it is possible to link takeover
performance with critical conflicts or crashes.

Traffic simulationmodels do not allow virtual ‘crashes’
to occur by design; their input parameters and model
specifications ensure safe interactions, as in most cases
the modelling purpose is that of traffic efficiency.
The safety impacts of traffic scenarios in general,
and takeover scenarios in particular, are based on
an assessment of the criticality of certain conflicts
by means of SMoS. In this research, we assume
that, by incorporating more elements of human driver
behaviour in simulation, and allowing for virtual
crashes to be observed by post-processing the outputs, it
is possible to assess the safety implications of authority
transitions in a more realistic way.

3 Methodology

3.1 Takeover sequence

In this paper, we consider ACC and CACC
systems, which are typically considered Level 1 or
2 automation (SAE, 2018); however, the car-following
performance that can be achieved is representative of
the performance that might be expected at higher levels
of automation (e.g. automated platooning) (Shladover
et al., 2015).

Take Over Time (TOT) brings together the times
resulting from a sequence of information-processing
stages (Gold & Bengler, 2021; Gold et al., 2013;
Petermeijer et al., 2016):

1. perception of visual, auditory, and/or vibrotactile
stimuli;

2. cognitive processing of the information;
3. response selection (decision-making);
4. resuming motor readiness (hands and feet on

steering wheel and pedals); and
5. initial action (e.g. first steering and braking input to

the vehicle).

Various studies state ‘baseline’ reaction times of
approximately 0.7 to 1 s for the first road fixation and
1.2 to 1.8 s for the first contact with the steering wheel
(in SAE level 3) (Gold et al., 2013; Zeeb et al., 2016).

Actual task execution times (e.g. steering, braking
times) are important factors to consider, because the
longer it takes the driver to build cognitive awareness,
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the shorter the remaining execution time will be, within
a given time budget (Zhang et al., 2019). By adding
braking time to the perception / reaction times when
planning or programming the automated system, the
safety consequences of takeover operations can be
assessed more accurately.

In Figure 1 an alternative approach to the takeover
sequence originally presented by Zhang et al. (2019) is
presented. In particular, two additional times are added
in the time sequence, reflecting the additional time that
is required for a driver to perform the required action for
collision avoidance. These two metrics are: the Time
to Control (TC), and the Safe Time Budget (STB).

Compared to the TOT, which only captures the
first moment of action (braking/steering) and thus
cannot guarantee collision avoidance, the Time to
Control (TC) indicates the moment at which no more
deceleration force is required to avoid a potential
collision with the leading vehicle. In accordance with
that, another measure is also necessary, in order to
capture the last ‘safe’ moment right before a collision.
Compared to the Time Budget (TB), which shows
the last moment that the system is able to handle
the task, the Safe Time Budget (STB) defines the
moment just before the collision—under the given
driving dynamics—in which the collision is evaded,
and includes the time—after the system limit—for the
needed action to be taken by the driver for collision
avoidance. A well-designed ADS should ensure that
the TB (system limit) should precede the STB (last
chance before collision) by at least the braking time
required by the following vehicle. If the system limit
is close to the STB, the braking distance available
might not be sufficient for the driver to implement the
necessary task. Consequently, with the combination
of the Time to Control and the Safe Time Budget, it
can be safer to assume that, once the ratio of these two
metrics is smaller or equal to 1, a collision-free situation
is ensured.

Moreover, the combination of these two metrics may
be preferable in order to conclude not only on the
probability of critical conflict, but also on the severity
of the incident as well. While their ratio might have
the same value for quite different circumstances (e.g.
a Time to Control of 2 s with a Safe Time Budget
of 4 s has the same ratio with a Time to Control of
5 s and a Safe Time Budget of 10 s), their actual
absolute difference (e.g. 2 s vs. 5 s) provides additional
insights into the severity of the conflict. The respective

difference of the previously usedmetrics (i.e. TB-TOT)
does not have a similar intuitive meaning in terms of
collision avoidance, as it merely reflects the speed of
building cognitive and motor readiness, without taking
into account the actual execution time within the time-
to-collision available.

3.2 Safety metrics estimation and thresholds

As shown in Figure 1, the TC is defined as the time
from the warning stimulus until the moment that the
driver stopped decelerating at a certain rate. After this
point a driver can either maintain a constant speed,
accelerate, or shift control back to the system again.
Only when these actions are fully performed can it be
assumed that the authority transition took place in a
safe way. In a simulation model, for a given scenario,
the elapsed time from the moment of the warning until
the moment that the driver has stopped applying a
deceleration force greater than -2m/s2 can bemeasured.
The specific threshold is the value at which the ADS
can be reactivated after an authority transition (Xiao
et al., 2018). Hence, TC represents the time that the
driver needs in order to perceive the warning stimulus,
build cognitive awareness of the situation, assume
motor readiness and perform the needed action. TC
is calculated as the sum of the TOT and the action
execution time and can be directly derived from the
simulation algorithm.

Accordingly, STB is the total available time for the
driver to actually take control of the vehicle. This
is the time from the moment of a warning, until the
last moment before a potential collision, and can be
estimated as follows:

At any moment of a car following situation, before the
potential collision, the following kinematic equation is
valid:

x2 − x1 − l > 0 (1)

x1: Position of following vehicle (front edge) (m)

x2: Position of lead vehicle (front edge) (m)

l : vehicle length (m).

The STB is the result of equation 1, divided by the speed
difference of the two vehicles. It can be understood
as the safe Time to Collision’ (sTTC), which captures
the last safe moment right before a collision. This
time is the summation of the TB and the action time.
Its calculation derives directly from the simulation

7
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Figure 1 Takeover sequence including task execution stages

algorithm.

STB = (x2 − x1 − l)/(v1 − v2) (2)

x1: Position of following vehicle (front edge) (m)

x2: Position of lead vehicle (front edge) (m)

l : vehicle length (m)

v1: speed of following vehicle (m/s)

v2: speed of lead vehicle (m/s).

The indicator proposed for safety assessment purposes
in this research is the time difference between available
and achieved time for vehicle control ∆TC , i.e. the
difference between STB and TC:

△TC = STB − TC (3)

Obviously, the closer the indicator value is to zero, the
more likely it is that an actual crash will occur, while
the higher the value is, the safer the authority transition
can be considered. According to Eriksson & Stanton
(2017), the required space gap between vehicles both
in terms of safety and comfort, is approximately 1 car
length for every 16 km/h (4.44 m/s) of speed of the
following vehicle. By dividing the average vehicle
length (4 m) with the 4.44 m/s speed, it can be derived
that 0.9 s are required for a vehicle to cover a one-
vehicle length. A ∆TC value of 0.9 is taken as the
threshold at which a crash is avoided, and values lower
than 0.9 are used to define ‘critical conflicts’.

In order to demonstrate the added value of the proposed
metrics and safety indicator, a similar safety indicator
is proposed on the basis of the conventionally used
indicators of takeover performance, i.e. TOT and TB,
which reflects the time difference ∆T TOT between

available and achieved time for driver intervention (not
including vehicle control):

△TTOT = TB − TOT (4)

A respective threshold for determining the conflict
criticality on the basis of the TOT approach can be set
as follows: we start by adopting a Time To Collision
value that would be considered acceptably safe by the
majority of drivers; for that purpose, we adopt the
value of 2.6 s from Hogema & Janssen (1996). In
that earlier study, 2.6 s was found to be the maximum
TTC exhibited by 85% (85th percentile) of drivers in
a simulator driving with ACC engagement. This time
can be considered as critical in terms of the remaining
available time for a driver to handle a situation,
including the total time of perception, reaction and
action. In order to determine a critical threshold for
∆T TOT (which by definition only includes perception
and reaction time), we will subtract the mean value
of the braking times—calculated on the basis of the
empirical data—from the boundary of 2.6 s.

4 Experimental setup

The present study is based on the data generated by
the CACC simulation model created by Xiao et al.
(2018). This model highlighted the influence of
system deactivations in CACC mode on traffic flow
on bottlenecks. This resulted in a dataset, which
includes different types of authority transitions. Also,
the CACC model manages to capture driver-system
interactions in a realistic way on the basis of data. More
specifically, the longitudinal response of the CACC
model is an empiricalmodel that is derived from vehicle
datameasured from a field test consisting of four CACC
vehicles on public roads. The experimental scenario is
intentionally kept simple to avoid ‘noise’ and allow the
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emphasis of this research to be placed on the already
complex translation of traffic flow impacts to safety
impacts.

4.1 Car following model

As elaborated in Xiao et al. (2017), the applied car
following model is based on two parallel control
loops. Three stages, namely, perception, decision-
making, and actuation, govern the human driver
as well as the (C)ACC control loop (Xiao et al.,
2018). These three stages are a representation of
the sequential process for the physics of vehicle
behavior in discrete time steps (Milanes & Shladover,
2014). The vehicles have three possibilities in terms of
operation system: a) manual driving, b) ACC operation
and c) CACC operation. The automated operations
(ACC and CACC) integrate controllers for 3 control
purposes (Shladover et al., 2015):

• Cruising controller (desired speed maintenance if
there is no preceding vehicle)
• Gap regulating controller (desired time gap
maintenance when there is a preceding vehicle)
• Gap closing controller (transition from cruising
controller to gap regulating controller when a
preceding vehicle is identified).

Regarding manual driving, the car following model is
based on a modification of the IDM (intelligent driver
model) (Schakel et al., 2012; Treiber et al., 2000), the
IDM+. With the implementation of the IDM+ instead
of the IDM, more logical values in terms of traffic
capacity can be achieved.

4.2 Lane changing model

The LMRS (lane change model with relaxation and
synchronization) by Schakel et al. (2012) is the basis
for the lane change model designed by Xiao et al.
(2018). In this model, a decision model is used for
the prediction of the lane changing behavior based on
the concept of lane change and gap relaxation The
decision model calculates the lane change desire first,
and determines whether a lane change is needed and
which type of lane change should be executed. In order
to obtain the lane change desire, a weighted summation
of multiple-lane change motivations, gaining speeds
and traffic rules (keep right instructions) is required.
With respect to the interaction amongst lateral and
longitudinal behavior of the vehicle, the acceleration is

modeled as a function of the desired lane change and the
desired gap. The human driver behaviour model was
calibrated on the basis of loop detector data of SR99
corridor in California (car-following and lane change
behaviour in both free flow and congested flow) (Xiao
et al., 2017).

4.3 CACC deactivation model

A main assumption regarding the use of ADS is that
drivers are assumed to drive with an active system
(ACC/CACC) as much as possible. In addition, during
active system operation, there were three states under
which the deactivation process could take place: safety-
related (collision warning—critical approaching), lane
change related (synchronization for a lane change), or
route related (exits, merging scenarios, lane drop).

Another assumption made is that the ADS cannot
be reactivated when the deceleration rate exceed the
margin of (-)2 m/s2 or during a lane change (Xiao
et al., 2018). The TC is therefore measured from the
moment of the warning till the moment that the driver
decelerates with a rate higher than the above-mentioned
threshold. Additionally, drivers’ attention is considered
to be continuous during the activation-deactivation of
the system as they are assumed constantly in the control
loop (SAE Standard J3016).

Next, in themain reference study (Xiao et al., 2018), the
reaction of the driver is considered to be equal to zero
(0) seconds. In reality, even if the driver is continuously
alert, a reaction time of at least one (1) second applies.
For that reason, and for the calculation of the TC, four
different TOTs have been used based on the research
performed by Eriksson & Stanton (2017): 1.14 s, 2.05
s, 2.69 s, and 3.04 s, with corresponding TBs of 3 s, 4
s, 6 s and 7 s. The TB times were selected based on
the STB ranges calculated from the simulation model,
and the TOTs were selected based on the TBs. This
means that, if a Safe Time Budget is calculated to be
approximately 5 s, the corresponding Time Budget is 4
s, and thus the TOT is 2.05 s.

A collision warning is based on the inverse time
to collision (iTTC). The other reasons for system
deactivation are related to the drivers’ desire to adjust
vehicle dynamics (driver initiated) and are therefore not
considered in this study. For the system deactivation,
both ACC and CACC systems can be deactivated,
with the system reverting to manual driving (SAE
level 1&2). The model used by Xiao et al. (2018),
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assumes that vehicle dynamics are highly associated
with acceleration capabilities, driving comfort and
safety, therefore a gradual transition from an active
system to manual driving is necessary. One important
alteration in CACC behavior concerns the reduced time
gaps; when there is an authority transition, there is a
need to adapt from one desired time gap to another.
CACC time gaps range from 0.6 s to 1.1 s (CACC
and ACC) and the corresponding time gap for manual
driving is 1.4 s (Xiao et al., 2017).

Finally, regarding the deceleration forces that apply in
this study, at the time the driver takes over control of
the vehicle, the deceleration force is considered to start
at -6 m/s2. Depending on the time gap with the front
vehicle, the deceleration force is gradually reduced in
a smooth way so that the desired time gap of manual
driving is reached (Xiao et al., 2018).

4.4 Experimental design

The simulated network is a four-lane highway section
with an on-ramp (length 250 m) where congestion
occurs including a resulting capacity drop. The entire
network is 11 kilometers long. The first 3 kilometers
are used as a warm-up distance in order to allow CACC
platoons to form naturally (see Figure 2).

Five different penetration rates for CACC operations
are tested, starting from 20% to 100% with a 20%
increments. The on-ramp demand was set to 400
vehicles per hour. Each of these 5 penetration rate
scenarios runs with 5 different random seeds (assigning
the vehicle class i.e. ACC/CACC, the desired speed,
and the arriving interval between two vehicles at the
generator). The simulated duration is one hour (0.1 s
time step) with the first 10 minutes used as a warm-
up period. The mainline demand was set to 80%
of the capacity of the corresponding CACC market
penetration rates in a pipeline section.

Table 3 Lists the parameters of the car following model
as well as the simulation settings (Shladover et al.,
2015).

The output metrics that are calculated per vehicle were:

• Time step (0.1 s)
• Location (m)
• Speed (m/s)
• Acceleration (m/s2)
• Lane (current lane)

• Class ID (= 1 then normal vehicle, 7–10 then
CACC)

•Mode (Cruising / gap regulating / gap closing)

• Operation system (manual = 0 / ACC = 1 / CACC
= 2)

• Distance headway (m)
• Deactivation type (0 means no deactivation, 1
means collision warning).

In addition, an algorithm was designed in order to
identify authority transitions, flag the trajectories of
these vehicles and calculate the Time to Control (TC),
derived from the difference of the time step where the
deceleration force became smaller (absolute value) than
the threshold, minus the time step where the warning
appeared, plus the driver reaction time. This also allows
actual braking time of each vehicle to be calculated.

In order to calculate the STB, pairs of vehicles in
car-following situations were identified and matched
based on their location (including lane). Once the pairs
of vehicles were identified, the STB was calculated
for each deactivation. Finally, for each conflict the
differences ∆TC and ∆T TOT were calculated. The
mean actual braking time in this network was found
to be 1.02 s, so the critical threshold for ∆T TOT is
calculated as 1.58 s (see section 3.2).

5 Results

5.1 Simulation results

Table 3 shows the output of the simulation of each of
the 5 seeded repetitions of each scenario. It is observed
that the total throughput rises with increasing the AV
penetration rate. In the same way, the number of
conflicts (system deactivations) as well as the number
of critical conflicts also increase.

More specifically, in the 20% penetration rate, only
a small number of conflicts appears, with none of
them revealing significant criticality (in terms of∆TC

threshold). The percentage of conflicts out of the
total number of AV in the network is insignificant
(less than 0.5%). In the scenario of 40% penetration
rate (Table 4), the total throughput increases by
approximately 6%. The number of conflicts increases
respectively, however still no critical conflicts occurred
(percentage of conflicts in the network hardly reaches
1%.)
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Figure 2 Experimental setup: simulated road network (Xiao et al., 2018)

Table 3 Parameters and values used in the simulation

Parameters Value Units

Max acceleration (conventional vehicles) 1.25 m/s2

Max deceleration (conventional vehicles) 2.09 m/s2

Stopping distance 3 m
Desired time gap (manual driving) 1.4 s
Vehicle length 4 m
Free flow speeds N (125, 8.75) km/h
V2V communication range 300 m
Sensor range 120 m
Desired time gap (ACC) 1.1 s
Desired time gap (CACC) [0.6–1.1] s
ACC-CACC lower acceleration limit -4 m/s2

ACC-CACC upper acceleration limit 2 m/s2

The 60% penetration rate scenario reveals the first
critical conflicts. A few actual crashes (identified as
conflicts in which the value of ∆TC was negative,
indicating that the TC exceeded the STB available)
also appear in this case probably due to the increase in
the traffic throughput in combination with the smaller
headways operated in the network. The throughput
increased by a factor of 1.1 and the incidents by a factor
of 5. The percentage of conflicts out of the total AV in
the network reached 3%.

Similarly, the 80% penetration rate scenario revealed
an increase of the incidents proportional to the increase
in throughput. The conflict percentage ranges between
4 to 5% and the number of crashes also slightly
increased compared to 60% penetration rate. In
the final scenario (100% penetration rate), all the
examined parameters increased sharply. The total
traffic throughput increased by around 2000 vehicles
per repetition. The number of conflicts raised by
approximately 1000 (system deactivations). The

number of critical conflicts as well as crashes increased
significantly compared to the previous scenarios.

Among the critical conflicts identified in all scenarios,
97% of them occurred when the disengagement
happened while in CACC operation. This is due to the
fact that the desired gap under CACC operation mode
is smaller than under ACC operation mode, leaving less
time available to the drivers to react during an authority
transition. Among the CACC-related critical conflicts,
66% were for desired gaps of 0.6s, and another 27%
concerned desired gaps of 07s.

The results indicate that driving with smaller headways
can result in more hazardous situations when a
deactivation of the automated system occurs. This can
lead to nearmisses or even crasheswhen combinedwith
large speed differences between the vehicles involved
in the conflict, especially when the initial speed of the
rear vehicle is higher.
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Table 4 Summary model output—conflicts per scenario and per type

Scenario Seed
1 2 3 4 5

Penetration rate 20%
Total vehicles 7 479 7 596 7 539 7 769 7 558
Manual 5 983 6 077 6 031 6 215 6 046
AV 1 496 1 519 1 508 1 554 1 512
Conflicts 5 3 6 5 9
Critical conflicts 0 0 0 0 0
Crashes 0 0 0 0 0
Penetration rate 40%
Total vehicles 7 914 7 954 8 021 8 092 7 975
Manual 4 748 4 772 4 813 4 855 4 785
AV 3 166 3 182 3 208 3 237 3 190
Conflicts 25 21 27 29 20
Critical conflicts 0 0 0 0 0
Crashes 0 0 0 0 0
Penetration rate 60%
Total vehicles 8811 8717 8825 8805 8794
Manual 3524 3487 3530 3522 3518
AV 5287 5230 5295 5283 5276
Conflicts 145 91 108 103 84
Critical conflicts 8 0 0 2 2
Crashes 3 0 0 1 2
Penetration rate 80%
Total vehicles 10 306 10 294 10 325 10 359 10 416
Manual 2 061 2 059 2 065 2 072 2 083
AV 8 245 8 235 8 260 8 287 8 333
Conflicts 313 361 338 294 374
Critical conflicts 3 1 9 6 8
Crashes 1 1 4 3 3
Penetration rate 100%
Total vehicles 12 672 12 468 12 808 12 617 12743
Manual 0 0 0 0 0
AV 12 672 12 468 12 808 12 617 12 743
Conflicts 1 203 1 021 1 142 1 149 1 182
Critical conflicts 21 16 43 75 23
Crashes 12 4 29 36 10
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It can be also noted that the increase of critical conflicts
and crashes is not proportional to the increase of the
total throughput resulting from the higher penetration
rate. An approximate ‘risk rate’ for this network
can be calculated by dividing the average number of
conflicts or crashes, divided per the average number
of vehicles in the network. The calculated risk of
critical conflicts rises from 0.27 conflicts per thousand
vehicles at the 60% penetration rate, to 0.52 at the 80%
penetration rate and to 2.81 at the 100% penetration
rate. Respectively, the risk of crashes rises from 0.136
crashes per thousand vehicles at the 60% penetration
rate, to 0.23 at the 80% penetration rate and to 1.44 at
the 100% penetration rate.

5.2 Safety evaluation of conflicts

Figures 3a & b compare the detection of critical
conflicts and crashes by means of the new proposed
metrics, compared to the previously used ones, for the
scenario of penetration rate 80% (repetition 1). More
specifically, Figure 3 shows the time differences (∆TC

and∆T TOT ) of the rear vehicle for each one of the car
following situations identified after the post-processing
of the trajectory data generated by the simulation
model; all these car following situations correspond
to conflicts identified through a collision warning. In
Figure 3b (lower panel) the values of ∆T TOT (Time
Budget minus Takeover Time) per vehicle are plotted
in descending order, while the horizontal line indicates
the threshold value for critical conflicts, as calculated
from the empirical data (1.58 s)—see section 3.2. In
Figure 3a (toppanel), the values of ∆TC (Safe Time
Budget minus Time to Control) per vehicle are plotted
for the same order of vehicles, while the horizontal
line indicates the respective threshold value for critical
conflicts (0.9 s).

Both methods were able to identify conflicts, but only
the new method (Figure 3a) was able to identify the
critical ones in terms of takeover performance. This is
in line with the fact that the TOT-based method is based
only on the perception / reaction times of the drivers
and assumes an optimal driver behavior (braking task
execution) at all times. The 3 critical conflicts are
visible in the top panel of the graph as those bars whose
height is lower than the horizontal line (at the right part
of the graph), and the 1 actual crash is visible as the
single negative value appearing at the same place.

With respect to sensitivity, in Figure 3b the vast
majority of vehicles exhibit a uniform behavior,

because the input parameters are based on a small
number of reference values. While Take Over
Times (TOT) only take a few specific values for all
drivers/vehicles, the Times to Control (TC) exhibits
larger variation by different drivers, because braking
responses are allowed to vary; this affects both the
TC and the STB. Therefore, for each ∆T TOT value
(i.e. each uniform part of Figure 3b), there is a
corresponding non-uniform distribution of ∆TC in
Figure 3a. At the ‘tail’ of minimum values of each
one of these distributions, a small number of critical
conflicts or crashes are captured.

Therefore, the proposed new methodology of
evaluating critical conflicts on the basis of perception,
reaction and execution times is more sensitive and
estimates more accurately the actual remaining
time available for drivers to respond to a system
deactivation. It is in fact a more conservative approach,
but also a more safety-relevant one, as it yields a
number of critical conflicts that is closer to real world
conditions.

5.3 Time to Control analysis

The time-to-control (TC) was found to be positively
correlated with the initial speed of the rear vehicle
participating in the conflict—which is intuitive. In all
penetration rates, CACC vehicles had higher frequency
of conflict, due to their smaller gaps compared to ACC
vehicles. Moreover, in the scenario of 80% penetration
rate of higher, ACC vehicles had statistically significant
higher TC compared to CACC, suggesting that vehicles
that achieve smaller gaps are also more efficient in
terms of TC in this scenario. However, TC differences
were not significant in the 60% and 100% penetration
rate scenarios.

Further analysis showed that ∆TC is negatively
correlated with the speed difference of the two vehicles
participating in the conflict. The linear slope of
speed difference against ∆TCwas -0.537 for 60%
penetration rate, -0.321 for 80% penetration rate and -
0.147 for 100%; all slopes were statistically significant
at 95% confidence level. This suggests that a higher
speed difference results in more critical conflicts
(smaller difference between time-to-control and safe
time budget), but the correlation decreases as the
penetration rate of AVs increases.
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Figure 3 Identification of critical conflicts by means of: top panel—the time difference∆T c (Safe time budget - Time to
Control); bottom panel—the time difference∆TTOT (Time budget - Takeover Time)

6 Discussion

Many studies regarding authority transitions in
automated driving have been performed in the past
with little to no focus on the identification of optimal
transition times with respect to concrete safety
outcomes. The main contribution of this research,
compared to previous studies performed in this field, is
the introduction of a new method for identification
and assessment of conflicts’ criticality in authority
transitions. To the best of the authors’ knowledge,
it is the first time that actual (and variable) maneuver
execution times are considered for the evaluation of
critical incidents.

A main finding of our study is that by increasing the
penetration rates, safety due to authority transitions’
implications is compromised. Other studies performed
so far claim that safety is increased by the deployment
of AV in general (Papadoulis et al., 2019)—but none of
these studies has tested in their simulation the impact of
authority transitions in particular. Moreover, although
several studies have reviewed the factors affecting
takeover performance (Papadimitriou et al., 2020), and
found several traffic and environmental determinants
(e.g. higher traffic density, higher level of automation
and adverse weather increase TOT), no study has
associated takeover performance with penetration rate

of AVs. Our study suggests a deterioration of
safety metrics during authority transitions in higher
penetration rates. The prevalence of this type of
accident mechanism may have been underestimated in
the past.

A main reason for this deterioration is that the desired
time gaps under which active automation systems
operate is significantly lower than those that human
drivers are comfortable to drive in. This difference in
the time gaps seems to be critical when it comes to this
type of safety maneuver, since the available time for
the driver to react and perform an avoidance action is
limited. The expansion of time gaps to higher values,
which are more in line with the capacities of human
drivers in case of deactivation, should be considered
especially when the ODD of the corresponding vehicle
has also a finite capacity. For example, an automated
vehicle that is equipped with a CACC system capable
of achieving times gaps of 0.6 s, operating under SAE
level 2 (limited ODD), could be programmed in such a
way that its minimum value is not used, and the time
gaps allowed are closer to those of human drivers are
comfortable driving with (although this would have a
negative effect on throughput). Overall, the results—
although exploratory—imply the significance of a
harmonized AV system ensuring smooth transitions,
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and the importance for adequate time for drivers to
react.

Another interesting finding is the strong relation of the
TC with the initial speed of the vehicle. This seems
reasonable because the higher the velocity of a car
is, the more time is required to decelerate to a point
that a collision is avoided. However, this time is also
dependent on the behavior of the leading vehicle. If in
a traffic scenario the leading vehicle starts accelerating
again before coming to a full stop, there will be no
reason for further deceleration of the following vehicle,
therefore avoiding a potential collision in less time.
This is the case when shockwave traffic jams appear
and disappear. A way to deal with this problem is the
use of a dynamic design of takeover requests’ strategies
with respect to warning times, where the stimulus may
be triggered depending on the vehicle’s speed.

In addition, a rather unexpected finding was the fact
that different desired time gaps did not seem to
significantly differentiate from each other in terms
of the safety implications of the transition. It was
assumed that vehicles capable of achieving smaller
time gaps would result in higher numbers of critical
incidents. A possible explanation is that the algorithm
used in this study was designed in a way that vehicles
drive with an active CACC mode under desired time
gap of 0.6s as much as possible. Thus, no random
distribution between different classes and operation
modes existed, making the sample for the rest of the
classes insignificant.

The developedmodel in this study has some limitations.
Firstly, the data that were used as input for this
study were derived from a simulation study that was
initially designed to assess traffic efficiency and not
traffic safety. This means that several KPIs had to
be either calculated outside of the model or based on
similar studies. More specifically, the reaction times
which were extracted from the previous simulation
model were equal to zero. This means that by the
time a collision warning was triggered, the driver was
assumed to immediately start braking at the same time
step. This is not realistic, as the total time that the
driver kept braking until the -2 m/s2 threshold was not
the actual braking time but the entire Time to Control
(TC). An adjustment had to be made based on the TOT
derived from Shladover et al. (2015). The same applies
to the Time Budget metrics. These limitations led
to different assumptions for the calculation of various
metrics, which need further exploration and validation

in future research.

Another potential limitation comes from the
assumption that automation would automatically
reactivate again after the -2 m/s2 threshold. It might
be the case that the braking action performed till
that threshold would not be sufficient to avoid a
collision, and the automation takes over control of the
vehicle before the completion of the safety maneuver.
This means that if this setting for reactivation is not
implemented, the actual number of critical incidents
and crashes might have been significantly higher.

In addition, for the calculation of the two thresholds for
the corresponding two ∆T values (STB-TB and TB-
TOT), but also for the TOT and TB themselves, the
mean values of relevant metrics where used. In reality,
collision risk is not determined by such mean values,
but rather by the outliers of their distributions instead,
as these extreme values better represent poor driving
behavior.

In order to demonstrate our proposed methodology,
we had to adopt or adjust threshold values from the
literature, because standard values do not exist for
TOT—and no threshold values exist for our new
proposed KPIs. It is thereby acknowledged that the
proposed values may be improved in further research.
Moreover, a sensitivity analysis with respect to the
parameters of the simulation would provide additional
insights, however unfortunately the authors do not
have access to the dataset for further analysis at this
stage. Such sensitivity analysis of safety outcomes to
simulation parameters should be prioritized in future
research.

7 Conclusions

The objective of this research was to provide insights
into the safety implications of authority transitions
in AV operations, by taking into consideration the
available time between a collision warning and the
potential collision. Two new safety indicators, namely
Time to Control (TC) and Safe Time Budget (STB) are
introduced, based on the fundamental safety indicator
of Time to Collision; these new indicators combine the
perception/reaction times and the actual braking times,
allowing for a more accurate safety evaluation.

From a methodological perspective, the proposed
indicators would be useful not only for safety
evaluations in microsimulation studies, but also for
safety evaluations of real-world pilots, small scale
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driving tests or driving simulator studies with new
vehicle systems involving authority transitions.

From a modelling perspective, by incorporating the
actual braking times, more emphasis is put on human
behaviour, which can be the critical determinant
between a safe vs. an unsafe outcome in authority
transitions. Our study reveals the added value and
the potential of post-processing of existing simulation
datasets for safety purposes, as safety is seldom the
primary goal of a simulation model. In this sense, our
proposed method and indicators could be applied to
other AAC/CACC simulation outputs, by researchers
that wish to test a more realistic assessment of the
safety impacts of automation disengagements in their
network. Further research should be conducted to
explore the potential of this method in other contexts
or scenarios.

Moreover, our results highlights the known limitations
of simulation models and the challenges to realistically
represent human behavior and its safety implications.
Previous studies on AV safety did not take into account
authority transitions in their simulations. Therefore,
while the safety benefits shown in their results may
be valid for regular AV driving, the negative safety
impacts of authority transitions are not taken into
account.

From an engineering and policy perspective, the current
and future findings in this field show directions for
improvement for vehicle manufacturers to redesign
automated driving systems in a way that will improve
overall safety, not only under normal conditions, but
also under emergency situations, e.g. extending the
ODD of automated systems, so that they are capable
of addressing more traffic conditions (safety-critical
situations, low-speed operations), making them more
resilient to disturbances, and limiting the amount
of system deactivations and thus preventing safety
problems. Transport planners and road operators
should be aware of the human limitations in takeover
tasks, and be able to account for these variations in their
simulation models to ensure safety in mixed traffic.
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