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Abstract: Driving characteristics of bicyclists and motorists differ significantly in critical, uncritical
and unaffected situations in road traffic. When bicyclists cross the path of right-turning motorists,
bicyclists seem to mitigate conflicts that can develop into crashes, while motorists seem to avoid non-
critical but close interactions that can develop into conflicts. This is one of the key findings of the
evaluation of a recently developed and successfully tested cooperative driver assistance system (C-
ADAS) that warns right-turning motorists of potential collisions. The warning is given by a special
traffic light, whichwe called ‘amber light’, lighting up only in dangerous situations. Whether a situation
becomes dangerous or not is determined by a decision tree, fed by the measured kinematics and specific
surrogate measures of safety of the interacting road users. Most notably, the results demonstrate that
criticality can be rated by measuring anticipation (or surprise) by computing the cross-power spectrum
and applying entropy metric on the acceleration functions of the road users. However, one of the
outcomes is that the time for the road users to perceive the amber light state might be too low to react
properly. These findings can be used to improve the performance of such a C-ADAS.

Keywords: cooperative ADAS (C-ADAS), crash prevention, cross-power spectrum, cycling safety,
entropy, traffic conflict analysis

1 Introduction

Cycling has become increasingly important in the
decarbonisation of transport. However, the number of
crashes involving bicyclists, which may go along with
severe injuries or fatalities, is increasing. In Germany,
the number of killed bicyclists increased from 381 to
474 (+24.4%) during 2010 to 2022 (Destatis, 2022a),
as in other parts of the world. In case of road
user crashes with personal injury involving bicyclists
in 2020, motorists most often make mistakes when
turning (15.4%), give way (13.4%) and keep distance
(12.6%) (Destatis, 2022b), while bicyclists often use
the wrong roadside (16.7%), make mistakes turning

(8.1%) or give way (7.4%) (eBikeers, 2020). The
interaction of right-turning motorists with crossing
bicyclists is one of the most critical ones, particularly
if the bicyclist is relatively behind the motorist (i.e. in
its blind spot) (Kircher & Ahlström, 2020). In Kolrep-
Rometsch et al. (2013), 66% of bicycle-vehicle crashes
with personal injury were situations between right-
turning motorists and crossing bicyclists. Obviously,
there is an urgent need to completely avoid or at
least mitigate such dangerous interaction situations
between bicyclists andmotorists by increasing situation
awareness of the interacting road users. Consequently,
at least the heavier road user (e.g. lorry) has to be
aware of the situation in order to reduce speed to reduce
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kinetic collision energy in time and thus, accident
severity of the bicyclist and to increase the remaining
time for the bicyclist to conduct a potentially necessary
evasive action.

Many efforts have been made to make cycling safer,
some of themwill be briefly described in section 2. One
solution was recently presented by Saul et al. (2021),
which will be the basis for this article. Saul et al.
(2021) developed and Manz et al. (2020) successfully
tested an algorithm for C-ADAS, which could predict
potential crashes between right-turning motorists and
crossing bicyclists and send out warnings to them. For
this purpose, an infrastructure-based traffic light, called
‘amber light’, was used (Figure 1, right). If a potentially
critical situation was predicted, the amber light lit up to
warn the motorists before turning right, and it remained
off for uncritical situations. Sending out warning
messages was triggered by a decision tree (Figure 1,
left) trained with the relevant variables describing such
interaction situations: the distances of the bicyclists and
motorists (dCP ) to their collision/conflict point (CP),
their speeds (v) and predicted post-encroachment time
(pPET) (remark: pPET continuously quantifies how
narrowlymotorists and bicyclists will havemissed each
other). This rule-based approach warned the interacting
road users if certain conditions were exceeded. For
instance, if dCP of the road users were below 17m and
pPET below 2 s and the speeds were larger than 1m/s,
a warning message was sent and the amber light lit up.
A hysteresis prevented the amber light from changing
states and thus, avoid switching on and off too often.

Although some behavioural patterns and positive
effects of this C-ADAS were already presented
in Dotzauer et al. (2018)—for instance, it could
be shown that this implementation made this type
of interaction between bicyclists and right-turning
motorists approximately 11% safer—some unanswered
problems remained. For instance, it seemed that road
users’ accelerations did not play a role for training
the decision tree, although they are the only control
parameters—apart from the change of direction—to
perform evasive manoeuvres. In this respect, we will
(i) show the largely differing kinematic characteristics
between right-turning motorists and crossing bicyclists
in critical and uncritical encounter situations and make
use of them to measure anticipation (or ‘surprise’) in
such encounter situations. Further, despite its above-
mentioned positive effect on safety, this C-ADAS’
reliability is almost completely unknown, particularly
when dCP is considered. Therefore, we will evaluate

it with regard to (ii) the reliability of just-in-time
warnings before a potential collision between right-
turning motorists and crossing bicyclists and (iii) the
distance to CP such an amber light ought to be installed.
These are examples of essentially important aspects to
establish well-accepted C-ADAS in the future.

The article is organised as follows: A literature
review about increasing situation awareness, relevant
approaches to measure, predict and increase traffic
safety as well as currently available ADAS is given
in section 2. Then, in section 3, the methodical
approach is presented that includes data collection at an
urban intersection and required methods and metrics to
conduct this study. Dedicated results are presented in
section 4, which are discussed in section 5. In section 6,
the article is concluded and aspects of our future work
are presented.

2 Related work

2.1 Increase situation awareness

Road traffic regulations must be obeyed by all road
users in order to ensure safe and efficient transport
of people and goods. Participating in traffic requires
a high level of vigilance. While ensuring situation
awareness in traffic is the purpose of road traffic
regulations and educating all road users of any age
and type, it is quite a challenging task when it
comes to technically increase situation awareness
before upcoming collisions. Due to the spatio-
temporal dynamics of traffic and its participants,
critical situations and collisions are often the result
of the wrong or inappropriate behaviour of road users
interacting with other road users (Knake-Langhorst
et al., 2024), if ‘something goes wrong’. As we know
by the numbers of road user crashes, educating people
and road traffic regulations are not sufficient to reduce
road violence and road users being killed or seriously
injured.

To increase road users’ situation awareness technically,
several ways of how to support road users in terms
of the different levels of criticality of upcoming
collisions have been discussed (5GAA, 2024; ETSI,
2013; Ihlström et al., 2019): The first level is informing
the (potentially) interacting road users, without being
on a collision course, about their presence. The second
level is characterised by increasing situation awareness
of road users on a collision course in case of a further
escalation, but with time enough to avoid a collision.
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Figure 1 Left: Decision tree for early risk estimation applied in C-ADAS for right-turning motorists and crossing
bicyclists (Saul et al., 2021); right: amber light at the East-northern corner of AIM Research Intersection (Dotzauer et al.,
2018).

The third level is warning the road users, of which at
least one of the road users has to adapt to the situation
and conduct an evasive action to avoid a collision. The
fourth and fifth levels can be described as technically
assistance or intervention to avoid or minimise the
consequences of a collision. Clearly, levels one, two
and three can be handled by the road users without
technical support, as they are not time critical. For
instance, von Sawitzky et al. (2022) found that 6 to 9 s
before a critical situation are reasonable to inform (level
one) the driver in case of a dooring situation. Prohn &
Herbig (2023) identified 2 s and McGehee & Carsten
(2010) 1.8 s time for the levels two and three. In case of
levels four or five, advanced driver assistance systems
(ADAS) are necessary, because of their time criticality,
which is very often less than 1 s.

2.2 ADAS and C-ADAS

Advanced driver assistance systems (ADAS) have
been developed to assist drivers—mostly motorists—in
several different traffic situations such as parking, lane-
keeping, car-following, overtaking, and controlling
energy consumption, etc. but particularly they should
support drivers in critical situations before they develop
into crashes. Collision warning systems for trucks
is one example (Ulrich et al., 2020) of many other
solutions and products. The European Parliament
recently set implementation dates of vehicle-based
collision avoidance systems for newly registered
trucks and buses to July 2022 and for all new cars
to July 2024 (EU, 2019). Solutions to support
motorcyclists (Huang et al., 2022) and specifically
bicyclists to avoid crashes become more and more

popular, such as the BlincBike system (Christian,
2021) or Garmin’s distance radar (Garmin, 2023),
which can support the bicyclist to increase situation
awareness and thus, reduce reaction time. The start-
up company Borèal Bikes provides HolosceneX, a
sensed (front/heck lidar and camera, heck radar)
and V2X-equipped e-bike (Borèal Bikes, 2017) that
uses smart grips with a Bluetooth based handlebar
plugin for haptic feedback, bike tracking, hands free
navigation, separation alerts, etc. (SmrtGRiPS, 2023).
The bicycle manufacturer Canyon recently announced
volume production of V2X technology in premium
e-bikes (Gerteis, 2023). In Reallabor Hamburg
(2022) a vehicle-to-anything-communication (V2X)
based collision warning system was developed to
warn the interacting road users before potential
collisions. Lefèvre et al. (2012) validated a Bayesian
approach to risk assessment among interacting
motorists at intersections considering drivers’
expectations in accordance with traffic regulations and
their intentions. Estimated risks were sent to the road
users by vehicle-to-vehicle communication (V2V).

Infrastructure-based solutions (i.e. cooperative ADAS
or C-ADAS) that estimate an upcoming collision by a
roadside unit send out warnings to the interacting road
users or to a dedicated traffic light via infrastructure-
to-vehicle-communication (I2V), can rarely be found
on the market. The Bike Flash is an example
of such a solution (Bike-flash, 2016), although it
does not take advantage of I2V. Another C-ADAS
solution was put into operation in Hamburg, Germany,
recently (PrioBike-HH, 2024). Nine ground lights
indicate to right-turning motorists that bicyclists are
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crossing. Although such systems should support
right-turning motorists not to collide with bicyclists,
they can lead to acceptance problems and negative
consequences, if possible dangerous or safe outcomes
of the situations are not considered. A drawback is
that motorists might get warned although they already
took notice of the bicyclists and thus get annoyed of
superfluous information. As a consequence, motorists
may learn to rely solely on the warnings instead of
being alerted in such situations, what can even lead
to larger negative consequences. In order to prevent
motorists from learning to solely rely on warnings (if
they have already taken notice of the bicyclists) and to
warn only in the event of real danger, Saul et al. (2021)
developed and Manz et al. (2020) successfully tested
a C-ADAS that predicted potential collisions between
right-turning motorists and crossing bicyclists. This
systemwarned the interactingmotorists only in the case
of potentially critical situations. They used road user
kinematics and the pPET as essential metrics to predict
dangerous situations.

2.3 Estimation and prediction of conflicts and
crashes

Typically, road safety is determined on the basis of
crash data by considering the number and severity of
crashes. But this method is disadvantageous due to
the rareness and to some extent also randomness of
crashes at certain locations. One more issue with
using crashes or related indicators as a measure for
road safety, especially in relation to active road users,
is that certain road types are avoided by active road
users. So, the absence of conflicts or crashes does not
mean that such places are safe. Furthermore, the cause-
effect-relationship cannot always be determined due to
missing statistical significance making it a challenge to
develop models explaining, predicting and preventing
crashes in the future. For instance, crash prediction
models (CPM) are used to model and estimate the
number of crashes at a certain location considering
traffic parameters (e.g. annual average daily traffic),
infrastructural and other relevant parameters (e.g.
number and width of lanes, available traffic control,
etc.— Hossain et al. (2019)). Obasi & Benson (2023)
evaluated the effectiveness of several machine learning
techniques for crash severity prediction on the basis
of several years of crash data. They found that
random forest-basedmethods outperformedmany other
tested models by a prediction accuracy of 87% and
additionally, across several injury severity classes.

Based on observations, Tarko (2019) bridged the gap
between crashes and conflicts by estimating the number
of crashes given a certain number of conflicts within a
time margin using the Lomax distribution.

The Swedish traffic conflict technique is an established
method (Hydén, 1987; Laureshyn & Várhelyi, 2018).
It allows understanding near-crashes, critical and
non-critical encounters instead of only trying to
analyse crashes. The drawbacks of the original traffic
conflict technique are subjectivity and the missing
valid quantification of the correlation between crashes
and critical encounters, which have been overcome
since technological advances in video-based systems
and AI-based methods lead to better tracking and
discrimination of traffic objects. Automated video-
based detection and semi-automatic assessment of
traffic situations allow for identifying critical traffic
situations before they develop into crashes. The
determination and application of so-called surrogate
measures of safety (SMoS) by video-based traffic
analysis (Ismail et al., 2010) is an opportunity
to identify, analyse and understand safety-critical
encounters or even crashes. Some SMoS can be used to
evaluate traffic situations offline in post hoc analyses,
while others are to suitable for online processing or
even prediction tasks. For instance, TTC (time to
collision), pPET (predicted post-encroachment time),
T2 (measure that combines pPET and TTC) and
extended Delta-V are examples that allow to determine
and even forecast traffic situations and their possible
outcomes in terms of severity. An example of the use
of SMoS is the research presented in Saul et al. (2021)
that developed an algorithm capable of discriminating
between critical and non-critical encounters of right-
turning motorists and crossing bicyclists using pPET,
their distances to CP and their speeds.

Kluger et al. (2016) used trajectories of single
vehicles of interacting road users of the SHRP2
Naturalistic Driving Study data set (SHRP2, 2013)
to detect safety-critical events (i.e. crashes, near-
crashes and other unsafe driving behaviours). They
successfully identified 78% of the safety-critical
events by analysing frequency time series of road
user trajectories. Specifically, they transformed
longitudinal acceleration data of the road users into
Fourier space, computed the area under amplitude and
performed and evaluated a k-means cluster analysis.
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2.4 Conclusion

So far identified, C-ADAS for right-turning motorists
and crossing bicyclists are rare and some of them lack
adaptiveness. The recently developed C-ADAS (Saul
et al., 2021) appeared to be the only one trying to warn
the right-turning motorists by sending out warnings to
them if potentially dangerous situations were predicted.
However, its reliability is almost completely unknown
and deserves more attention. This specific C-ADAS
will be the basis for the research presented throughout
this article. Besides consideration of road users’
kinematics and criticality metric pPET, we additionally
will build upon the work of Kluger et al. (2016)
(last part of section 2.3) and analyse the longitudinal
acceleration functions of right-turning motorists and
crossing bicyclists in unaffected, uncritical and critical
encounter situations.

3 Methodological approach

This research makes use of recorded trajectories
of right-turning motorists interacting with crossing
bicyclists at an urban intersection. Apparatus and
final data set are introduced in section 3.1. In section
3.2 we introduce the relevant methods and metrics
to obtain answers concerning the role of the road
users’ acceleration functions with regard to cycling
safety and the reliability of C-ADAS in question.
This includes the computation of confusion rates over
distance to CP, the pPET-function, while considering
kinematic patterns of the road users as well as the
application of specific signal processing methods, such
as cross-correlation and Fourier transform. It appeared
that the maxima of the cross-power spectra were
suitable markers to significantly distinguish between
critical, uncritical and unaffected situations. Since
critical situations may occur as a surprise—because
the involved road users do not expect them to happen
and thus, react by evasive actions, such as braking or
dodging, we expect acceleration functions of critical
situations to differ characteristically from acceleration
profiles of uncritical situations. Therefore, we will try
to measure ‘surprise’ by applying the entropy metric
on the acceleration functions. Finally, we will conduct
inferential statistical tests on the relevant data.

3.1 Apparatus and final data set

Trajectory and video data of bicyclists and motorists
were recorded at AIM research intersection (Figure 2).
This is a four-legged signalised urban crossing

located at the north-eastern arm of the ring
road in Braunschweig, Germany, equipped with
stereo-cameras (Knake-Langhorst & Gimm, 2016).
Approximately 20 000 road users pass this intersection
every day (Saul et al., 2021).

Right-turning motorists and crossing bicyclists
were recorded with 25 fps between 22 August and
18 September 2016 (four weeks) and between 28 May
and 3 June 2018 (one week). The 2016 data set was
used to train the decision tree (Saul et al., 2021), while
this one week of the 2018 data was part of a five-week
operation of the C-ADAS to increase the number of
unaffected situations for the comparison (see below).
Trajectory data consisted of GNSS-based time stamps,
UTM positions, velocities, accelerations, headings
(derived by adequate motion models and Kalman
filtering), modes of transportation (e.g. car, truck,
bicycle) and their sizes. Video data was anonymised
in real-time to very low-resolution images to fulfil the
European General Data Protection Regulation (GDPR,
2016) restrictions.

Altogether, trajectories of 1 169 crossing bicyclists and
12 305 right-turning motorists were recorded. The
decision whether two road users interact with each
other was made by filtering the trajectories with PET
< 2.5 s. 49 conflict and 273 uncritical encounter pairs
remained for further analysis after expert annotation
(critical vs uncritical encounters), eventually. The
conflict area was crossed by the motorist before the
bicyclist in 85% of the critical encounters. The relation
in case of uncritical encounters was the opposite, which
means, in 89% of the cases the bicyclist crossed before
the motorist. Additionally, 96 unaffected bicyclist
and 836 unaffected motorist trajectories were recorded.
Unaffected road users were the ones that were solely
present on the crossing and thus, being completely
undisturbed. Due to corrupted data (e.g. broken
trajectories, missing time stamps, false detections
such as bicyclists riding too close to each other)
some trajectories were dismissed from the analysis.
Sometimes trajectory data close to the collision point
was missing. To calculate pPET, we extended those
trajectories by 10 data points (i.e. 0.4 s) assuming that
those road users went on at the same speeds as before.
This also includes a compromise between preferably
completed data and timely trajectories reflecting the
road users’ actual interaction behaviour. Finally, 40
critical, 237 uncritical and 96 unaffected pairs remained
in the final data set (those 96 of 836 unaffected motorist
trajectories were chosen at random).
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Figure 2 AIM research intersection. Left: location at north-eastern corner of the ring road marked as red circle (modified
from www.openstreetmap.org); middle: top view with use case in question (blue: bicyclists’ path, red: motorists’ path),
the curve centre is approximately 8 to 10m and the stop line approximately 30m away from CP; right: sensors and their
fields of view (blue/amber: cameras for road user detection, green/amber: additional cameras for road user detection on
pedestrian/bicycle crossing).

Figure 3 Critical encounter situation between motorist C0 and bicyclist B49 recorded at 2016/09/09, 5:58:49.077 p.m.
(left), 5:58:50.000 p.m. (middle) and 5:58:51.153 p.m. (right). The ids C0, B31 and B49 were artificially enlarged for the
sake of readability.

3.2 Explorative observation

Situations with right-turning motorists from East to
North interacting with crossing bicyclists from East to
West were of specific interest. Both road user types
shared the same traffic light phase and intersected the
bicycle and pedestrian crossing. Critical encounter
situations could appear when the interaction partners
passed through the joint conflict area at the same time.
To get an impression of the situations analysed, in
Figure 3, three frames of a critical encounter situation
are shown. Motorist C0 yielded bicyclist B31, but did
not yield the approaching bicyclist B49 and started to
accelerate. B49 had to resolve the conflict by braking
and letting C0 pass with PET= 1.21 s (see explanation
of PET in section 3.2.1 and Figure 4).

3.2.1 Kinematic patterns and predicted
post-encroachment time

We computed kinematic patterns (i.e. speed and
acceleration) of motorists and bicyclists and the pPET
(known as Tadv in Hansson (1975)), which quantifies

how close two interacting road users will have missed
each other that shared the same conflict area. The pPET
is also used to describe the implicit negotiation between
bicyclists and motorists before passing through the
shared area (Zhang et al., 2022). It is a suitable metric
to estimate potentially dangerous situations of road
user interactions and thus, predict critical situations
or crashes. It can be computed during the whole
interaction process by Equation (1) with expected travel
time Ti, distance to CP di,CP , speed vi of road user i=
{1;2} and time t:

Ti (t) =
di,CP (t)

vi (t)
(1)

The pPET is different from post-encroachment time
(PET). PET quantifies how close two interacting road
users that shared the same conflict area have missed
each other (Allen et al., 1978) (Figure 4). PET cannot
be determined before, but always after a conflict or
collision. However, pPET and PET are equivalent, if
road users’ paths to CP, their object sizes are known
and their expected travel times Ti are continuously
computed as shown in Equation (1).
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Figure 4 Definition of PET: (a) right-turning motorist and crossing bicyclist approach the intersection, (b) motorist leaves
conflict area first at time t1, (c) bicyclist enters conflict area second at time t2 and misses motorist with PET = t2 − t1.

3.2.2 Decision tree and confusion rates

The decision tree proposed in Saul et al. (2021)
(Figure 1, left) was evaluated by determining the
confusion rates along dCP . Sensitivity (true positive
rate, TPR) and specificity (true negative rate, TNR)
provided the percentage of the situations in which the
C-ADAS in question correctly estimated conflicts and
non-conflicts, respectively. Further quantities for the
evaluation were overestimation and underestimation
of conflicts. Overestimation is the percentage of
predicted conflicts that were no conflicts (false-positive
rate, FPR). Underestimation is the percentage of
predicted non-conflicts that actually were conflicts
(false-negative rate, FPN).

3.2.3 Correlation function and power density
spectrum

The acceleration functions of unaffected, uncritical and
critical situations were considered as stochastic signals
with x(n) as bicyclist’s and y(n) motorist’s discrete
acceleration functions, τ as time shift, ω = 2πf
as angular frequency, j =

√
−1 as imaginary unit

and E as expectation value operator. Auto-correlation
functions (ACF) φxx and φyy were computed, which
reflect the magnitude of self-correlation and situation-
specific mean signal energies at their maxima φxx(0)
and φyy(0) (Unbehauen, 2002):

φxx(τ) = E(x(n) · x(n− τ))
φyy(τ) = E(y(n) · y(n− τ))

(2)

The cross-correlation function (CCF) φxy (τ) was
computed to identify the similarity of the acceleration
functions between bicyclists and motorists:

φxy (τ) = E (x (n) · y (n− τ)) (3)

In analogy to the ACFs in Equation (2) , the positions
of their cross-correlation maxima and the situation-
specific ‘cross-signal energy’ at φxy(arg max) were

determined. Finally, φxy(τ) was transformed into
Fourier space using Discrete Fourier Transform to
obtain the cross-power density spectrum RXY with τ
as time shift, j as imaginary unit and φ as angular
frequency):

RXY (ω) =
∑

∀τ φxy (τ) · exp (−jωτ) (4)

Since the height of the maximum of ACF reflects the
signal energy we applied this idea on CCF too to obtain
RXY,max.

3.2.4 Entropy

In information theory, entropy H(a) is a measure of
uncertainty, surprise or information of a stochastic
variable a (here: acceleration) inherent to the variable’s
possible outcomes (Shannon, 1948). Due to the
fact that accidents, critical (or atypical) situations
in road traffic are rare events, the involved road
users may be surprised by the situation and react by
evasive actions, such as immediate braking or dodging.
For this reason, we aim to measure anticipation (or
‘surprise’) by determining and comparing entropy of
the acceleration functions for unaffected, uncritical
and critical encounter situations. In our case, entropy
H(a) will be computed with the symbols ai of the
‘acceleration alphabet’ (i.e. αi ∈ |a|), their
probabilities pi =pi(ai) for each symbol and the dual
logarithm ‘log2’ as:

H (a) = −
∑

ai∈|a| pi · log2pi (5)

Note that the maximum entropy and the probabilities pi
change in dependence on the binnings of the alphabet.
Therefore, entropy has to be robust against different
alphabet binnings.

3.2.5 Inferential statistical tests

Methods of descriptive and inferential statistics with a
level of significance of α = 0.05 were applied to the

7
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obtained results. All relevant variables were tested for
normality of the residuals by applying Shapiro-Wilk
test. Some of the data samples were significant to reject
the normality assumption. Data of speed, acceleration,
pPET, entropy and the maxima of the cross-power
density spectra were tested for homoscedasticity. Due
to the different sample sizes, dependency on dCP

and the violation of the homoscedasticity condition,
non-parametric Mann-Whitney-U and Kruskal-Wallis-
H tests were used for single and group comparisons,
respectively. In case of post hoc tests, Bonferroni
correction was applied.

4 Results

4.1 Preparation of final data set for analyses

The final data set (section 3.1) of unaffected, uncritical
and critical situations had to be pre-processed for
different purposes in different ways. In case of
computing the ACFs φxx, φyy and CCF φxy as
well as the cross-power density spectrum RXY , the
acceleration functions of bicyclists and motorists
appeared to be characteristically different only at the
last meters before CP. Consequently, all trajectories
were cut at some distance before their CP and the
parts from the cut to the CP remained. However,
at what distance before CP those trajectories had to
be cut, was part of this research. Actually, these
limiting values were the result of the potential collision
predictability in accordance with the outcomes of the
interaction behaviour predicted post-encroachment
time pPET, entropy H and cross-power density
spectrum RXY (sections 4.3, 4.4 and 4.5). For this
reason, 40 critical, 237 uncritical and 96 unaffected
trajectory pairs remained. For statistical evaluation we
balanced (Bortz & Schuster, 2010) the remaining data
sets yielding a 1:2 fraction of 40 critical, 80 uncritical
and 80 unaffected pairs, which were chosen randomly
from the existing data pairs.

4.2 Confusion rates

To evaluate reliability of C-ADAS in question
(Figure 1, left), we computed the confusion rates for
bicyclists and motorists along dCP (Figure 5):

• Sensitivity (TPR)—a correct prediction of
conflicts—shown as red solid line, appeared to
exceed 50% after 16m (bicyclists) and 12m
(motorists) before CP.

• Specificity (TNR)—a correct prediction of non-
conflicts—shown as green solid line, appeared to be
approximately 40 to 60% in close range to CP and
70 to 80% at larger distances to CP.
• Overestimation (FPR)—non-conflicts predicted as
conflicts—shown as green dashed line, appeared
to be between approximately 40 to 60% (bicyclists)
and 40 to 70% (motorists) in close range to and
smaller at larger distances to CP. Formotorists, FPR
even increased continuously from approximately
30% (17m to CP) to 70% (immediately before CP).
• Underestimation (FNR)—conflicts predicted as
non-conflicts— shown as red dashed line, appeared
to be less than approximately 20% (bicyclists) and
less than 50% (motorists) in closer range to CP and
approximately 50 to 90% at larger distances to CP.

4.3 Interaction behaviour

Interaction behaviour was analysed by computing
pPET for bicyclists along dCP . In Figure 6, pPET
is plotted for critical and uncritical encounters. pPET-
values smaller than or equal to zero indicate a predicted
collision (or road users may have changed their order).
For bicyclists, pPET-values of critical encounters
differed significantly from uncritical encounters
(pPET ≈ 2.1 s, p < .001) within the last 12m before
CP. As expected, at larger distances to CP (i.e. dCP >
12m) pPET-values were more arbitrary and reached
their largest variance between 20m< dCP < 24m,
but decreased again at even larger distances (i.e.
dCP≥24 m).

Application of Kruskal-Wallis-H tests on pPET(dCP )
supported these findings by the resulting p-values. It
revealed significant differences between critical and
uncritical situations for motorists up to a distance of
10m before CP (pmotorists < .05, pbicyclists < .001),
and for bicyclists significant differences occurred up
to a distance of 26m before CP (pmotorists = .8,
pbicyclists < .05).

4.4 Kinematic patterns

Kinematic characteristics of motorists and bicyclists
in unaffected, uncritical and critical encounter
situations are described by their speeds (Figure 7) and
accelerations (Figure 8). Statistical group comparisons
were not applied on kinematic data in this study,
because they had already been addressed in (Dotzauer
et al., 2017b). Those results showed significant
differences in bicycle speeds and interaction behaviour
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Figure 5 Confusion rates of bicyclists (left) and motorists (right) over dCP . Note that the x-axis shows the distance of the
road users to CP, which means both graphs should be read from right to left.

Figure 6 pPET-values along bicyclists’ dCP for critical (red) and uncritical encounter situations (blue). Note that the graph
ought to be read from right to left: dCP = 0 means, CP was arrived and all road users approached it from right (dCP < 30
m) to left (dCP > 0). For reasons of readability, the y-axis is limited to pPET= 10 s. The black horizontal lines in the boxes
represent the medians and the yellow crosses the means.

between critical and uncritical encounter situations
(i.e. bicyclists approached with larger speeds), but
for motorists, insignificant differences occurred.

4.4.1 Speed

Bicyclists and motorists showed specific patterns in
unaffected situations (Figure 7, right). Many motorists
stopped at the stop line (i.e. dCP ≈ 30 m) due to red

light. After that, approaching the curve, their speeds
decreased, which were at minimum of approximately
8m/s in the centre of the curve. Then, motorists
increased their speeds again. Bicyclists continuously
decreased their speeds until 2.5m/s at dCP ≈ 20 m,
then accelerated for about 6m, decelerated until the
cyclist crossing at dCP ≈ 4 m and finally crossed the
CP accelerating.
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In uncritical encounter situations (Figure 7, middle),
motorists showed smaller speeds than in unaffected
situations in general, which continuously decreased
their speeds down to approximately 2m/s between
4 m ≥ dCP > 2 m and then accelerated again crossing
the CP. Bicyclists, however, showed approximately
1 to 2m/s larger speeds in general than in unaffected
situations, particularly if dCP ≤ 12 m (i.e. slightly
before curve centre), but the underlying pattern seemed
to be similar, particularly at larger distances from the
CP.

In conflict situations (Figure 7, left), particularly
motorists’ speeds were larger between 2 to 12m before
CP (i.e. almost within the remaining distance behind
the curve centre) in comparison to uncritical encounter
situations, whereas the bicyclists’ speeds were lower
closer to the bicycle crossing and immediately before
CP.

4.4.2 Acceleration

In unaffected situations, motorists and bicyclists
approached the intersection quite similarly with
accelerations slightly smaller than 0m/s2 until
approximately 26m before CP (Figure 8 , right). The
largest differences appeared for bicyclists between 26
m≥ dCP > 10m (i.e. slightly behind the stop line and
before the curve centre). First, bicyclists decelerated
between 26m≥ dCP > 18m, then accelerated between
18 m≥ dCP > 10m before CP, and then decelerated
again. Immediately before CP, bicyclists accelerated.
Motorists, however, almost decelerated all the time,
but accelerated again immediately before CP.

In uncritical situations (Figure 8, middle), the patterns
of bicyclists and motorists’ accelerations in unaffected
situations repeat within 18 m≥ dCP > 10m before CP,
although bicyclists’ acceleration were larger. In critical
situations (Figure 8, left), however, approximately
8m≥ dCP > 2m before CP, bicyclists braked
intensively, while motorists accelerated. Although
large differences in accelerations of bicyclists and
motorists in unaffected, uncritical and critical situations
appeared, which obviously led to different kinematic
and interaction patterns presented above, significant
changes appeared in the last meters before CP.

4.5 Information theoretic results

On the basis of the results of the interaction behaviour
analysed by pPET and the apparent predictability

of potentially dangerous situations for bicyclists at
approximately 12m before CP, their manifestation
appeared in kinematic patterns and sensitivity
exceeding 50% at 12m before CP (motorists) and 16
m before CP (bicyclists). However, the role of road
users’ acceleration functions and the question where to
reliably warn the road users remained. Therefore, we
cut the trajectories dcut ∈ {10; 11; 12}m before CP and
computed ACFs and CCFs, cross-power spectra, their
maxima and entropies and applied inferential statistical
tests for the remaining parts.

4.5.1 ACF, CCF and cross-power spectrum

At first, ACFs φxx(τ) (bicyclists) and φyy(τ)

(motorists) (Equation (2)) and their mean signal
energies (i.e. φxy,max = φ(0)) were computed
for unaffected, uncritical and critical situations. It
appeared (not shown here), that the acceleration
functions of motorists were much more correlated
than those of bicyclists, because they showed a less
steep descent. In case of critical situations not only
the descents of bicyclists’ ACFs appeared to be steeper
than in uncritical and unaffected situations, also their
mean signal energies were larger.

Secondly, CCF φxy of bicyclists and motorists and
their cross-power density spectra were computed for
unaffected, uncritical and critical situations. In Figure 9
the maxima of the CCFs φxy,max and the cross-power
spectra RXY (upper panel) of these situations are
presented (only the parts with ω ≥ 0 are shown).
Additionally, the idea of quantifying the mean signal
energy of ACF was transferred to φxy and RXY to
determine their ‘mean cross-signal energy’ and thus,
φxy,max and RXY,max are shown as red stars. Visually,
argmax(φxy) and φxy,max differed (Figure 9, upper
panel). In the cross-power spectra (lower panel) the
differences were not that visually distinctive, however,
it appeared that these were significant in case dcut ∈
{10; 11}m.

In Figure 10, RXY,max is plotted for critical, uncritical
encounters and unaffected situations.

It appeared that the maxima of ‘mean cross-signal
energy’ were the largest in case of critical situations,
while unaffected situations showed the lowest values.
Applying Kruskal-Wallis-H for group comparisons and
Mann-Whitney-U tests for single comparisons yielded
results as shown in Table 1. The main effect (row
‘C vs U vsN’) showed significant differences among
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Figure 7 Speed of bicyclists (blue) and motorists (red) in critical (left), uncritical (middle) and unaffected encounter
situations (right). Note to read the graphs from right to left, since the road users approach CP from a distance dCP > 0. The
black horizontal lines in the boxes represent the medians and the yellow crosses the means.

Figure 8 Acceleration of bicyclists (blue) and motorists (red) in critical (left), uncritical (middle) and unaffected encounter
situations (right). Note to read the graphs from right to left, since the road users approach CP from a distance dCP > 0. The
black horizontal lines in the boxes represent the medians and the yellow crosses the means.

Figure 9 Cross-correlation functions φxy (upper) and cross-power spectra and RXY (lower) of acceleration functions of
critical (left), uncritical (middle) and unaffected (right) situations with dcut = 10m. The rad stars in every graph represent
the maxima of each single CCF and cross-power spectrum.
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Figure 10Maxima of the cross-power spectra RXY,max of
critical, uncritical and unaffected situations (dcut = 10m)

all situations, while the differences between critical
and uncritical situations (row ‘C vsU’) appeared to be
insignificant for dcut = 12 m. In any other case for dcut
the individual comparisons remained significant.

Table 1 p-values of RXY (dcut) with critical (C), uncritical
(U) and unaffected (N) situations.

Comparison dcut = 10m dcut = 11m dcut = 12m
C vs U vs N (α = 0.05) p < .001 p < .001 p < .001
C vs U (α = 0.05/3) p = .005 p = .016 p = .040‡

C vs N (α = 0.05/3) p < .001 p < .001 p < .001
U vs N (α = 0.05/3) p < .001 p < .001 p < .001

‡ not significant

4.5.2 Entropy

As a consequence of the significant differences between
the maxima of the cross-power spectra of critical,
uncritical and unaffected situations (section 4.5.1), we
computed the entropies of the acceleration functions
of bicyclists and motorists likewise. Since entropy
differs in case of alphabet binning changes, we tested
binnings of 0.5, 1.0 and 2.0m/s2 leading to changes
of the maximum entropies, but the underlying patterns
remained. Entropy appeared to be robust against
binning changes. In Figure 11, entropies of bicyclists’
(left half) and motorists’ (right half) acceleration
functions in critical, uncritical and unaffected situations
are presented with ai = 1 m/s2 and dcut = 10m.

Bicyclists had a significantly larger entropy in case
of critical situations (H = 2.46 bit) than in uncritical
(H = 2.10 bit) and unaffected situations (H = 2.08 bit).
In contrast, motorists had the largest entropy in case

Figure 11 Entropies H of critical, uncritical and unaffected
situations (dcut = 10m). The black horizontal lines in the
boxes represent the medians and the triangle the means.

of uncritical situations (H = 1.97 bit), whereas their
entropies appeared to be smaller in case of critical
(H = 1.66 bit) and unaffected situations (H = 1.58 bit).
Applying Kruskal-Wallis-H (group comparisons) and
Mann-Whitney-U tests (single comparisons) yielded
the results shown in Table 2. Themain effect (row ‘C vs
U vs N’) showed significant differences in general. For
bicyclists and motorists, differences between critical
and uncritical situations (row ‘C vs U’) as well as
for critical and unaffected situations (row ‘C vs N’)
appeared to be significant for dcut ∈ {10; 11}m, but
insignificant for dcut = 12m. For bicyclists, differences
between uncritical and unaffected situations remained
insignificant (row ‘U vs N’) for dcut = 10m. In
contrast, for motorists, differences between critical and
unaffected situations remained insignificant (row ‘C vs
N’) for any dcut.

5 Discussion

The objective of the study was to evaluate a recently
developed C-ADAS (Saul et al., 2021) regarding
the reliability of a just-in-time warning signal before
a potential collision of the interacting right-turning
motorists and crossing bicyclists. In this chapter we are
discussing the results presented in the previous chapters
with regard to decision tree and confusion rates (section
5.1), interaction behaviour (section 5.2), ‘surprise’ or
‘anticipation’ provided by the cross-power spectrum
and entropy (section 5.3), and the location of the amber
light (section 5.4).
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Table 2 p-values of entropy H for bicyclists and motorists with dcut ∈ {10; 11; 12}m in critical (C), uncritical (U) and
unaffected (N) situations.

Comparison Bicyclists: dcut Motorists: dcut
10 m 11 m 12 m 10 m 11 m 12 m

C vs U vs N (α = 0.05) p = .003 p = .002 p < .001 p < .001 p < .001 p < .001
C vs U (α = 0.05/3) p < .001 p = .009 p = .057‡ p < .001 p < .001 p < .001
C vs N (α = 0.05/3) p = .002 p < .001 p < .001 p = .176‡ p = .437‡ p = .186‡

U vs N (α = 0.05/3) p = .438‡ p = .014 p < .001 p < .001 p < .001 p < .001
‡ not significant

5.1 Decision tree and confusion rates

The sensitivity (TPR) and specificity rates (TNR)
plotted in Figure 5 clearly show that the amber light,
which was triggered by the underlying decision tree,
was useful to warn motorists before an upcoming
collision in time and not to warn motorists in case of
uncritical situations. However, particularly sensitivity
values differed for bicyclists (> 50% 16m before CP)
and motorists (> 50% 12m before CP) in different
distances to CP. For motorists, the probabilities of
false alarms and non-sent, but required warnings in
closer range to CP were larger than for bicyclists.
Consequently, predicting potential collisions and non-
collisions improved largely below or equal to 12m
before CP, particularly for bicyclists. However, the
effect of the amber light on the behaviour of road users
was already part of the research in Dotzauer et al.
(2018), who showed that the C-ADAS is question made
the crossing approximately 11% safer.

Due to the fact that the amount of trajectory data was
reduced to situations with PET< 2.5 s, no situations
with larger PET-values and consequently, too few
trajectory samples were considered for training the
decision tree. These are missing uncritical situations
(false negatives) and critical ones (false positives),
in which the road users had mitigated the conflict
before, but ended up with a larger PET due to some
relaxation time needed to ‘digest the shock’ (Trullos &
Gimm, 2022). As a consequence, a larger annotated
training set with more critical and particularly many
more uncritical situations would promise to improve
reliability of C-ADAS in both cases, which are warning
before upcoming collisions and no warning if situations
will not develop into conflicts/collisions.

5.2 Interaction behaviour and kinematic patterns

The results showed that pPET can be a stable and
suitable indicator for predicting conflicts between right-
turning motorists and crossing bicyclists already 10
to 11m before CP; at larger distances to CP their
variances increased and thus, predictability decreased.
These findings consolidate the results in Dotzauer et al.
(2017b), who stated that the last 10m before meeting
at CP make the difference whether an interaction
developed into a critical one or not. Depending on
the travelled speeds, which are approximately 12 to 23
km/h for motorists and bicyclists within the last 10m,
roughly 1.5 to 2.9 s remain to warn road users before
potentially dangerous situations. Clearly, latency
times for object detection, trajectory generation and
prediction, sending out warnings, etc. at this specific
intersection and also road users’ reaction times have
to be considered too, which decrease this narrow time
window further. Actually, we can state that such C-
ADAS may not work at large driven speeds at all
due to the low time margin available for motorists to
perceive warnings and react accordingly. However,
as the results of Dotzauer et al. (2018) showed, the
application of the amber light resulted in an increase
of the PET-values of 11%making this intersection a bit
safer. However, the results shown are only valid for
the intersection in question and have to be proven for
different geometries and topologies. This leads us to
the statement that the whole operating mechanism of
this specific C-ADAS is not well understood yet.

Reasons for the significant differences in kinematics
and pPET-values between motorists and bicyclists in
critical and uncritical situations may be, for instance,
that motorists mitigated encounter situations from
developing to conflicts, because they were aware
that bicyclists were present. In fact, in the most
cases of uncritical encounter situations, bicyclists were
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relatively positioned in front of themotorists decreasing
their speeds (Dotzauer et al., 2017a). However,
this is the opposite to critical situations: motorists’
characteristics were similar to unaffected situations
(i.e. decelerating from entering in the detection area
to the middle of the right curve and then accelerating
again). A reason for this can be that motorists were not
aware of bicyclists riding in their blind spots, yielding
kinematics similar to unaffected situations. Bicyclists’
kinematic characteristics (particularly the acceleration
function), however, showed large differences in the
last few meters before CP, which can be interpreted
as mitigating conflicts and adapting the situations by
strong deceleration. This is also in line with Dotzauer
et al. (2017b), in which in case of critical situations,
motorists appeared to be more frequent in front of
bicyclists (i.e. bicyclists were in their blind spot)
and bicyclists tended to cross behind motorists with
significantly lower PET. Eventually, we can confirm
that the last 10m before CPmake the reliable difference
between situations to remain uncritical or to develop
into critical ones.

5.3 Cross-power spectrum and entropy

The results showed that applying methods of signal
processing and information theory on the relevant
trajectory data yielded interesting insights in the
characteristics of the acceleration functions of right-
turning motorists and crossing bicyclists in critical,
uncritical and unaffected situations. For instance, it
was found that the ‘mean cross-signal energy’ was
significantly the largest (also largest variance) in case of
critical situations, while unaffected situations showed
the lowest values. An interpretation could be that the
larger the criticality of an interaction the larger themean
cross-signal energy. This result was also supported by
the significant differences of entropies for bicyclists
in critical vs uncritical situations if dcut ∈ {10; 11}
m and—on the other hand—the significant differences
of motorists’ entropies in uncritical vs critical or
unaffected situations. The reasons for this may be—
as mentioned earlier—that bicyclists seem to mitigate
conflicts to avoid crashes, while motorists seem to
avoid uncritical situations to develop into conflicts or
crashes. In general, it seems that the comparison
between critical (i.e. relevant and dangerous) and
uncritical or even unaffected situations leads to reliable
results if the last 10m of the trajectories remained,
since the tendency to insignificance increased if dcut
increased.

An interesting finding is that bicyclists’ entropies
appeared to be significantly larger than those of
motorists. This can be interpreted by the more
uncertain and thus, much less predictable driving
behaviour of bicyclists than that of motorists. This,
however, seems to be in contrast to the findings by
applying pPET and the identified confusion rates.
While the pPET-values appeared to be stable for
conflict prediction, particularly for bicyclists clearly
before 10m and motorists not before 10m before
CP, sensitivity exceeded 50% for bicyclists already
16m and for motorists 12m before CP. This can be
explained by the isolated consideration of accelerations
functions and by the fact that the decision tree in
question (Figure 1, left) did not take accelerations
into account, but velocities instead. Further, motorists
cannot change their behaviour as sudden as bicyclists
can, which should stimulate us to pay more attention
on understanding and predicting cycling behaviour,
for instance, for designing reliable and accurate (C-)
ADAS, particularly for bicyclists.

The question whether we are capable of measuring
‘surprise’ of road users in specific interaction situations
cannot be answered in all-encompassing manner. The
results showed that we were able to distinguish
between critical, uncritical and unaffected situations,
particularly in the last 10m before CP and the
differences of driving characteristics between bicyclists
and motorists in these situations: motorists avoid
interactions to develop into conflicts/collisions by a
continuous speed reduction until the bicyclist has
passed; and bicyclists mitigate real conflicts by braking
immediately before CP. Due to this, we can state that
we found a way to measure anticipation of motorists
and bicyclists in situations of different criticality.

5.4 Location of the amber light before CP

The results suggest the importance of the 0 to 11
m range, however, the installation of an amber light
at this position seems not reasonable. The reason
for this is that reliable predictions of potentially
dangerous situations are available if the interacting road
users are 10 to 11m away from the CP at maximum.
Additionally, road users need to have the chance to
perceive such an amber light lighting up in time, which
already took (latency) time to process the collision risk
and transmitting it to the amber light. These are the
reasons such an amber light requires an installation
much closer to the CP making the challenge of reliably
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warning interacting road users even more complicated
and somehow competing. Eventually, it may happen
that such a C-ADAS may not work at all, because
the available time for road users after such an amber
light lit up is too small to react properly (1.5 to 2.9
s in this research without considering latency times).
However, on the one hand, we should think about
additional ways to warn the interacting road users,
such as directed acoustic warnings. On the other
hand, we can increase the amount of available time
for road users to get the chance to be warned and act
properly. Besides technical ways, such as reduction of
latency times, an opportunity, for instance, is to force
the motorists to reduce their speeds approaching the
intersection, either by infrastructural measures or traffic
signs. Another way could be to make the relevant
metrics more predictable by harmonising road users
speeds at further distances (e.g. 50m) before the CP.
This could lead to more reliable pPET-values, larger
sensitivities and specificities and smaller percentages
of over- and underestimation at larger distances to CP.

6 Conclusion and future prospects

The results of this paper show that driving
characteristics of bicyclists and motorists differed
significantly in critical, uncritical or unaffected
situations. Even in case of unaffected situations
(i.e. completely undisturbed), specific kinematic
patterns appeared formotorists and bicyclists. Essential
parameters such as pPET, speed and acceleration,
their entropies and maxima of their cross-power
spectra, could be identified to assess and even reliably
predict spatio-temporal closeness (i.e. conflicts and
uncritical encounters) between right-turning motorists
and crossing bicyclists already 10 to 11m before CP.
This corresponds to a time horizon of roughly 1.5 to
2.9 s for the road users to perceive collision risk, to
get informed and to react and perform evasive actions.
This time window reduced further by approximately
0.5 s, since latency times of the whole processing chain
(i.e. object detection and classification, trajectory
generation, processing and prediction, risk estimation
and transmission) could be quantified to average 564
milliseconds at this urban intersection (Manz et al.,
2020).

The question posed at the beginning to measure
‘surprise’ cannot be answered, finally, but the results
show that we were able to determine anticipation for
bicyclists in critical and for motorists in uncritical

situations. It was found that the acceleration functions
of road users have a significant value, particularly up
to 10m before CP, for designing C-ADAS. However,
they should not be considered isolated, but, as a joint
metric together with pPET instead.

This research showed that installation, operation
and reliable effect of C-ADAS on road user
safety (particularly cycling safety) are complex and
sophisticated. On the one hand, we obtained reliable
results—as shown above—10m before CP, which
corresponds to roughly 1 to 2.4 s road users’ available
reaction time. But according to Green (2000), mean
reaction times in case of unexpected or even surprised
braking situations appeared to be approximately
1.25 s or 1.5 s, respectively. Consequently, this C-
ADAS in question may not be able to warn all
relevant road users before potentially dangerous
situations. Therefore, this small amount of time
could be increased by infrastructural (e.g. increase
the curvature) or operational (e.g. traffic signs or
speed control) measures to decrease and/or harmonise
speeds of interacting road users at further distances
to CP. However, as Dotzauer et al. (2018) showed,
this specific amber light made this intersection
approximately 11% safer without any of thesemeasures
mentioned. This leads the point to state that the
mechanism of this C-ADAS is still not completely
understood and needs to be studied further. This
includes the definition and quantification of the
competing requirements, such as amber light visibility,
additional warning measures (e.g. acoustic warnings),
robustness and reliability of collision prediction, early
warnings of the interacting road users, decrease of
latency and reaction times, relevant and suitablemetrics
and acceptance. This requires a thorough examination
of the intersection regarding geometry, topology,
traffic relations and control as well as the kinematic
and conflict-related parameters of the interacting road
users. These results do not only help to design future
C-ADAS in order to warn motorists before potential
conflicts/collisions, they are the basis for developing
cycling assistance systems, which also means to
transfer sensors, technologies and algorithms to the
bicycle.

Our future work will deal with trying to better
understand the effective mechanism of this specific
C-ADAS. This includes examining different types
of crossings, geometries and topologies, critical,
uncritical and also unaffected situations and integrating
the findings concerning the motorists’ and bicyclists’
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behavioural patterns, particularly their acceleration
functions, in a novel method for trajectory and
collision/conflict prediction. Additionally, we found
the maxima of the cross-power spectra significantly
differing depending of the criticality of the interaction,
which is not completely understood. We will improve
the current infrastructure-based processing chain to
receive more accurate trajectories (particularly for
bicyclists and pedestrians), extend our data base with
more critical and uncritical situations and try to get a
more detailed insight to measure ‘surprise’ in traffic
by, for instance, designing a joint entropy that involves
acceleration and pPET as some sort of combination
metric. Furthermore, we think, a more comprehensive
approach is necessary that takes the situation awareness
of the interaction partners into account. Therefore, we
aim to conduct eye-tracking studies and equip bicyclists
and motorists to quantify situation awareness of them
in such situations.
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