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Does training improve users’ mental models about
adaptive cruise control?
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Abstract:WhileAdvancedDriver Assistance Systems (ADAS) promise safety benefits to drivers, there
is evidence to suggest that drivers are unaware or uninformed about their vehicles’ systems and thus
have poor mental models about the systems. Previous studies suggest that training improves drivers’
mental models, although some studies report limited impacts. This study investigated the relationship
between training and drivers’ mental models about Adaptive Cruise Control (ACC), compared the
impact of two different training approaches on drivers’ mental models, and examined the relationship
between driver knowledge and trust regarding ADAS technologies. This study was conducted online,
and participants were randomly and equally assigned to one of three training groups—owner’s manual
(text-based); state diagram visualization; or sham (control). Surveys measured their trust and mental
models about ACC before and after training. The results found that the text-based group outperformed
the visualization group and the control group in terms of post-training overall mental model scores, but
these differences were not statistically significant. No correlation between post-training mental model
scores and overall trust scores was found. This study provides evidence that training improves users’
mental models about technology and finds that different training platforms or paradigms may affect
learning differently.

Keywords: adaptive cruise control (ACC), advanced driver assistance systems (ADAS), driver
training, mental models

1 Introduction

1.1 Background

Vehicle Automation technologies have been making
rapid advances in terms of development and
deployment in the past decades (NHTSA, 2017).
The Society of Automotive Engineers (SAE) has
classified Vehicle Automation into six levels (SAE,
2021), ranging from no automation (Level 0) to full
automation (Level 5). Although fully automated
driving (Level 4 and 5) requiring no driver or operator
dependency has not yet been achieved, and there are
significant technical and human factors challenges to
deploying Level 3, there have been positive strides

in the development of partially automated driving
features (Level 1 and 2), otherwise known as Advanced
Driving Assistance Systems (ADAS). These systems
carry out various automated functions such as collision
avoidance, vehicle speed regulation and gap distance
maintenance (Adaptive Cruise Control), or lane
position/centering assistance (Lane Centering Assist),
etc. ADAS promises safety and convenience benefits to
drivers. However, because these systems are designed
to take over some of the traditional driving tasks, the
introduction of these systems has changed how drivers
interact with their vehicles. In vehicles with these
systems, drivers assume a new role, i.e., supervising the
functions of these systems and monitoring their driving
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environment for possible intervention situations.

This new role requires drivers to have appropriate
knowledge and awareness about their systems’
capabilities and, potentially more importantly, their
limitations. However, the literature suggests that
drivers are unaware or uninformed about their vehicles’
systems (Jenness et al., 2008; McDonald et al., 2018).
Theremay be various reasons for this, with a potentially
important one related to the resources available for
drivers to understand these systems. While studies
have shown that many drivers choose to obtain
their knowledge about these systems from owner’s
manuals (McDonald et al., 2016), they only partially
or incompletely read these manuals (Mehlenbacher
et al., 2002). This is of particular importance since
new ADAS users have difficulties understanding their
systems (Larsson, 2012). Moreover, the quality of the
material presented in the owner’smanual can also affect
the driver’s knowledge and shape their perceptions of
these systems (Singer & Jenness, 2020). Also, there are
variances and inconsistencies in the reporting of system
limitations across different manufacturers (Pradhan
et al., 2021), and this could result in misconceptions
and overestimation of the systems’ capabilities.

There is evidence that a lack of knowledge or any
misconceptions about such systems may affect drivers’
mental models, which could potentially manifest as
action or response-related driver errors (Dickie &
Boyle, 2009; McDonald et al., 2018; Pradhan et al.,
2021). Mental models have been defined as ‘a
representation of the typical causal interconnections
involving actions and environmental factors that
influence a system’s functioning’ (Durso & Gronlund,
1999). Mental models continuously update knowledge
stored in memory and are derived from encountering
similar situations as those from past experiences.
However, because the deployment of ADAS in vehicles
has been recent, drivers may lack accurate mental
models about ADAS given the minimal experience,
as well as lack knowledge about system functions and
limitations as noted earlier. Incomplete knowledge
or mismatched expectations about a system’s function
and limitations may result in lack of mode awareness
hindering its user’s ability to allocate appropriate
attentional resources and detect errors, failures,
and miscommunications between the user and the
system (Sarter &Woods, 1995). In the driving domain,
such user-related errors have been known to play a
critical role in motor vehicle crashes. Singh (2015)
found that driver related-errors were assigned as the

critical reason in about 94% of crashes, where the term
‘critical reason’ was defined as the last event in the
crash causal chain. It was also found that about 41% of
the crashes were caused by recognition-related errors,
while decision-based errors and performance-related
errors were the cause for 33% and 11% of the crashes,
respectively. This inaccuracy or incompleteness of
mental models could lead to mode confusion (Wilson
et al., 2020), miscalibrated trust with regards to system
capabilities (Beggiato & Krems, 2013; Kidd et al.,
2017), and may result in operator errors during ADAS
usage (Stanton & Salmon, 2009; Pradhan et al., 2020,
2021). Hence, improving drivers’ mental models is
a critical requirement for appropriate and safe use of
vehicle technologies.

Driver’s mental models could be improved through
driver training. Driver education has helped in
improving skills related to hazard perception, visual
search, and situational awareness (Horswill et al.,
2015; Vlakveld, 2014; Walker et al., 2009). Driver
training has also improved drivers’ cognitive driving
abilities (Yamani et al., 2016), which could indicate
that training and education of drivers can be used to
improve novice drivers’ knowledge and awareness of
advanced driver assistance systems. Training can be
defined as ‘a planned and systematic effort to modify
or develop knowledge, skills and attitudes through
learning experiences, to achieve effective performance
in an activity or a range of activities’. Learning
can be defined as ‘a relatively permanent change in
behavior or in the behavioral potential that results
from experience’ (Garavan, 1997). Learning can
therefore be understood as one of the outcomes of
training. Learning also consists of many aspects,
such as learning environment, abilities and learning
style (Stern, 2017; Koć-Januchta et al., 2017). Learning
style in this case can be thought of as an individual’s
preferred way of learning (Plass et al., 1998). Learning
styles and preferences are usually based on four
major methods - visual, auditory, kinesthetic and
tactile (Klašnja-Milićević et al., 2016). According to
previous studies, majority of the population are visual
learners (Zopf et al., 2004) and learn using pictures,
videos, etc. Studies have also found that when learners
were instructed to form images while reading texts
or received pictorial cues, their recall accuracy and
retention was high (Paivio, 2014; Sadoski & Willson,
2006; Tabbers et al., 2004).

While training leads to learning and skill development,
one could seek knowledge and experiences of their
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own volition, which could also have similar learning
outcomes and skill development. The focus of this
study is to improve driver knowledge solely through
training methods. The impacts of driver training have
been widely examined in the literature, and there is
strong evidence of improvements after training in driver
behaviors such as attentionmaintenance (Pradhan et al.,
2011), hazard perception (Pradhan et al., 2005), and
hazard mitigation (Muttart, 2013). However, these
training approaches have been studied and evaluated
for the traditional driving domain. Since these
training approaches were not designed for or targeted
any vehicle technologies, there is little that can be
extrapolated from them in terms of impact on mental
models of advanced technologies.

The literature on driver training in the domain of
vehicle automation is somewhat sparse. Some prior
research has shown training to be effective in improving
driver’s knowledge about system limitations, but the
results have been somewhat mixed. In a study where
the training material provided was weak or strong
(given via powerpoint presentations), it was found
that drivers with strong mental models were better
at operating ADAS during edge-case situations than
those with weak mental models (Gaspar et al., 2020).
Another study showed that user education through
owner’s manual and interactive tutorial led to increased
understanding of driving automation systems (Forster
et al., 2019). In this study, participants were given
either baseline information (generic information about
L3 and L2 systems) or Owner’s Manual (information
delivered in a four-page, short sentences and bulleted
format, taken from a BMW manual) or interactive
(participants completed a tutorial and answered
questions).

In contrast, another study suggested that training
(provided as descriptions of the ACC interface and
explanations of icons displayed) improved drivers’
abilities to detect system notifications and change in
system status, but only moderately improved drivers’
comprehension of system limitations (Mueller et al.,
2020). Victor et al. (2018) also reported that of
drivers who received specific instruction about vehicle
limitations, as well as supervision reminders to keep
eye on road and hands on wheel, 28% still collided
with a conflict object in their experimental field study.
While a large majority of the participants (72%) did
benefit from the supervision and instruction (training),
it is still critical to examine the failures, and the authors
acknowledge the need for more research to examine

how to communicate system limitations to drivers.
Similarly, Noble et al. (2019) reported that training
strategies (baseline and interactive module where
participants watched videos and interacted with the
system as instructed) only led to limited differences in
driver knowledge and no difference in driver behaviors
or attitudes.

Drivers’ knowledge can contribute to their trust
in a system, and thus to the appropriate use of
a safety system. However, while there is much
work conducted in this domain, there is still mixed
evidence about the impact of training on driver trust.
In study conducted by Payre et al. (2017), simple
or elaborate (text and videos) training optimized
drivers’ trust when driving with automated features
and decreased time to respond to emergency situations.
Similarly, Koustanaï et al. (2012) familiarized drivers
with Forward Collision Warning system (an ADAS
feature) through a simulator-based training and also
found improvement in trust towards the system and
improvement in driver-system interactions. Three
other studies (Kazi et al., 2017; Lee & See, 2004;
Beggiato & Krems, 2013) also found that the correct
use and knowledge of ACC depends on the level
of trust in the system. However, when comparing
limitation-focused training and responsibility-focused
training approaches, DeGuzman & Donmez (2022)
found that there were no differences between the
two approaches regarding the drivers’ ADAS related
knowledge, but found that both approaches negatively
affected trust for scenarios where ADASmay not work.
Similarly, Zahabi et al. (2021) found no significant
differences in driver trust and knowledge about
automation when comparing between demonstration-
based and video-based training programs.

Overall, we need more evidence about the impact
of training on improving drivers’ mental models.
Traditionally, educating drivers about vehicle
capabilities and features have been conducted using
Owner’s Manual, which has been described as tedious
and too complicated (Mehlenbacher et al., 2002). In
this study, we compare multiple training methods, a
Text-Based training method which is based on the
Owner’s Manual and a Visualization method which
describes the different states of Adaptive Cruise
Control using state diagrams. We examine the effect of
training method and content to understand the impact
of different approaches on drivers’ mental models.
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1.2 Study objective and hypotheses

The objective of this studywas to understand the impact
of different types of training approaches and content on
improving drivers’ mental models of Adaptive Cruise
Control (ACC), and to understand if that is related to
driver trust.

This objective has been motivated by mounting
evidence in the field that training and education of
drivers may help in improving their understanding of
Advanced Driver Assistance Systems (Gaspar et al.,
2020; Forster et al., 2019). In addition, there is a
rich field of research that underlines the utility of
visual learning in improving recall and retention of
information (Paivio, 2014; Sadoski & Willson, 2006;
Tabbers et al., 2004). Finally, given the importance
of user trust in appropriate use of technology, it is
important to understand if trust may be related to the
depth of one’s understanding of a system. There is
evidence that trust in advanced drivers’ assistance
systems may be related to drivers’ mental models (Kazi
et al., 2017; Lee & See, 2004; Beggiato & Krems,
2013). However, we need more evidence on the
benefits of training, including evaluation of multiple
types of training and the relationship to trust.

Given these objectives and motivations, this
experimental driving simulator study was conducted
to test the following hypotheses:

1. Training improves drivers’ mental models of ACC
(as measured by knowledge).

2. Training that includes visualization will be more
effective than those without.

3. Drivers’ mental model improvement will
correspond to drivers’ trust in ACC.

2 Methods

2.1 Participants

36 participants (M= 31.58; SD= 10.23; min = 21;
max = 53; Female = 22) were recruited for this
study. Drivers with valid US driver’s licenses and
naïve to ACC were eligible for participation. On
average, participants had been licensed for 12 years
(Min = 1; Max = 39) and drove for 50–100 miles
weekly. A participant’s familiarity with ACC was
established by a series of screening questions about
their prior experience and familiarity using ACC.
Only those participants who self-reported as being

either novice users or having no knowledge about
ACC were included in the study. The study sessions
were conducted online through the Zoom video-
conferencing platform. Institutional Review Board
approval was granted for conducting the study.

2.2 Experimental design

The study was conducted as a between-subject
experiment with Training Method as the independent
variable and participants’ system knowledge as
the dependent variable. This section details the
experimental design of the study.

2.2.1 Independent variable

Training Method was the independent variable. There
were three training conditions, two experimental, and
one control, designed for the experiment. Participants
were randomly and equally assigned to one of the
three groups. After the pre-training survey measures
were collected, depending on the randomized grouping,
participants were sent a link to a document for the
training material. The training conditions were as
follows.

Text-Based Training (Group M)

The content and material presented in owner’s manual
could affect drivers’ knowledge and perceptions about
the system (Singer & Jenness, 2020). The Text-
based training method was developed to provide text
descriptions, system display & control images, and
warnings about ACC. This information was compiled
from actual owner’s manuals of vehicles that offered
ACC such as those provided by Subaru, Toyota,
etc. (Subaru, 2020; Toyota, 2021). There is evidence
that users only partially or incompletely read through
the owner’s manual (Mehlenbacher et al., 2002) and
therefore, the information presented in this training
method was streamlined to minimize time spent
searching for relevant information and maximizing
information retrieval about ACC limitations,
functionalities, and operational capabilities. The
training material informed the user about ACC control
mechanisms with pictorial representations of in-vehicle
components such as steering wheel, buttons, levers,
etc. The material also presented the user with actions
they could perform to change the parameters of ACC
such as following distance, speed, etc. as well as
cancel/resume ACC operations. The material also
presented the commonly documented edge cases where
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ACC would fail to respond or malfunction leading to
potential hazardous outcomes.

System Visualization Training (Group V)

The System Visualization Training method further
simplified the text-based training material by providing
a visual representation of ACC states in the form of
state diagrams (Pradhan et al., 2020, 2021). The state
diagram presented the various states of ACC, a total
of five states, in the form of circles and each circle
was labeled accordingly with the specific function of
ACC in that state. The diagram also featured arrows
leading in and out of each circle from/to other circles,
representing state transition. Transitions represented
the condition for user-based actions that would result in
changes in the ACC parameters. For example, if State
1 represented an ACC state where ACC was switched
on, and State 2 represented an ACC state where the
ACC was activated without a lead vehicle in front, a
possible user-based action to transition from State 1
to State 2 would be ‘pressing the Set+ button’. The
state-diagram visualization was supplemented by text
information about limitations derived from the owner’s
manual as seen in the text-based training material. This
training method was included to examine the secondary
hypothesis that the system visualization training, i.e.,
a simplified visualization of a complex system may
improve understanding as opposed to the text-based
method that presents only text-based information.

Sham Training (Group S)

The control group received a sham training material
consisting of text descriptions of unrelated ADAS
features, Forward Collision Warning systems (FCW)
and Lane Departure Warning Systems (LDW), adapted
from online resources (NSC, 2024b,a). This sham
training method was included to remove potential
confounds introduced by having a control group that
received no training material, and therefore did not
spend similar time and effort on a training intervention
as the participants from the other two groups. Similar
training methods have been used as control conditions
in past training studies (Pradhan et al., 2011; Divekar
et al., 2013; Horswill et al., 2015; Yahoodik & Yamani,
2021).

2.2.2 Dependent variables

The dependent variables included the participants’ pre-
and post-training mental model and trust scores. The
participants’ mental models were measured before and

after training using the Completeness and Accuracy of
Mental Models Survey (CAMMS) and similarly their
Trust in ACC was measured before and after training
using a Trust Survey (Jian et al., 2000).

Completeness and Accuracy of Mental Models
Survey—(CAMMS)

The Completeness and Accuracy of Mental Models
Survey (Appendix A) was developed by the research
team to obtain a measure of the completeness and
accuracy of a user’s mental models about ACC. For
this measure, completeness is defined by the users’
general knowledge about ACC, whereas accuracy is
defined by the users’ specific knowledge about system
features. Thus, a user with a ‘complete’ mental
model would be knowledgeable about the technology’s
features and functions, and a user with an ‘accurate’
model would be knowledgeable about the nuances
of the system functions such as the conditions and
parameters required for the functions.

Items in the survey for ‘Completeness’ included true or
false statements regarding ACC functions, limitations,
and operational capabilities, and the users could agree
or disagree on a 6-point scale with the statements.
The six-point scale (from strongly agree to strongly
disagree) was based on a confidence-based assessment
approach, and the response on the 6-point scale
indicated both the accuracy of one’s response, and
the confidence they had in that response. If the
correct response was selected for a ‘completeness’
item, the participant was presented with ‘Accuracy’
items which asked about specifics of the related item.
For example, for a completeness item such as ‘ACC
can regulate the vehicle’s distance from the vehicle
in front’, the corresponding accuracy items could be
‘ACC can regulate the vehicle’s distance from any
type of lead vehicle’ or ‘When ACC is regulating a
vehicle’s distance, there is no limit to how near or how
it can follow another vehicle’. This survey included
75 items (α = 0.84) in total, with 24 completeness
items (α = 0.87) and 51 accuracy items (α = 0.78). The
participants’ agreement responses were translated to a
scale of 0 to 100 for correctness of the answer, taking
into account the reversal of answers for the false scale.
This was done for both the completeness and accuracy
items. These scores represent the level of knowledge
that a participant has about a feature of ACC, with
higher scores indicating more knowledge about a
feature of ACC. An Overall Mental Model Survey
score was derived as the mean of the Completeness and
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Accuracy scores.

2.3 Experimental procedure

The experimental session was conducted online
on the Zoom video-conferencing platform and the
session lasted for approximately an hour. Participants
were randomly allocated to one of the three groups
immediately after their study session was scheduled.
This randomization was done by the experimenter prior
to any assessment using a predefined randomization
table. Blinding was not used because the training
interventions were presented by the experimenter, and
the group assigned were based on the type of training
intervention the participants received. Each of the
sessions began with the participants being informed
and consented for participation. The experimenters
then gave them a brief overview about the study
session. Under the supervision of the experimenters,
participants accessed the different surveys through
individual links provided by the experimenters.
Participants first completed the pre-training surveys
covering general demographic information and a Trust
Survey (Jian et al., 2000). Following these, the
participants received the Mental Model Survey. The
participants then completed the training material based
on their group allocation. The participants received a
link to the training material which led to a document
the participants read through. Following the training,
participants completed the post-training Mental Model
Survey and Trust Survey. After completing the
post training surveys, particuipants were paid and
the session was concluded. The entire session from
beginning of the session to the end took around 60 - 70
minutes.

3 Analyses and results

To measure the differences between the post-
training Overall Mental Model Survey scores across
three training groups, an ANCOVA (analysis of
covariance) was performed with the pre- training
scores being treated as a covariate. All analyses
were performed using R Statistical Software (v4.0.2).
We compared differences in the pre-and post-training
Completeness and Accuracy scores individually by
using R packages such as ‘mosaic’ (Pruim et al., 2017),
‘rstatix’ (Kassambara, 2024), and ‘ggplot’ (Wickham,
2016) to arrange and visualize individual survey items
on the Mental Models Survey across the three training
groups. A Pearson’s product-moment correlation test

was conducted to observe any correlations between the
Completeness and Accuracy scores before and after
training. A Pearson’s product-moment correlation test
was also conducted to observe any correlations between
the overall Mental Model Survey scores and the overall
trust survey scores before and after training. The
mean scores derived from the Mental Model Survey
have been included in Table 1. This table provides
the descriptives for the Completeness, Accuracy, and
Overall scores derived from the survey.

The Completeness and Accuracy scores were also
correlated to establish a relationship between the
Complete mental models and Accurate mental models
of the participants. The correlation test revealed that
there was a significant positive correlation between the
pre-training Completeness and pre-training Accuracy
scores, r (34) = 0.832; p = 3.275·e−10. There was
also a significant positive correlation between the
post-training Completeness and post-training Accuracy
scores, r (34) = 0.868; p = 1.324·e−11 (Figure 1).

Generally, both the plots indicate that the average post-
training scores for all groups were in the ‘correct’ range
(i.e. towards the right half of the x-axis). The plots
also show that, for most items, the corresponding pre-
training score (red circles) lagged behind (i.e. was less
correct) the post-training score (blue dots). While there
are some items that show a worsening of knowledge
for some groups after training, a majority of the items
show improvement in correctness after training, for all
groups, and for completeness and accuracy.

These plots were generated to visualize the data and
to get a sense of any trends or emergent patterns from
the raw survey outcomes. These plots provide an
important insight in terms of completeness items for
all groups, where participants’ mental models were
generally correct even in the pre-training scores, i.e.,
they had a reasonably correct understanding of the
overall features of the technology. However, for the
accuracy items, for all groups, the pre-training scores
tended to be incorrect, with training helping to move
the scores to the right of the x-axis.

3.1 Mental Models Survey scores

The post-training Overall Mental Model Survey scores
were analyzed across the three training groups using
ANCOVA (analysis of covariance) where the pre-
training overall scores were treated as the covariate.
The covariate, pre-training Overall Mental Model
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Table 1 Descriptives of the scores derived from the Mental Model Survey

Mean (SD) Pre-Training Post-Training
Completeness Accuracy Overall Completeness Accuracy Overall

Text-based 69.78 (25.4) 48.05 (35.8) 55.04 (34.3) 82.76 (23.0) 63.58 (38.5) 69.70 (35.5)
System Visualization 70.24 (24.4) 48.52 (35.0) 55.46 (33.6) 75.05 (25.5) 58.23 (37.0) 63.61 (34.7)
Sham (Control) 74.56 (25.8) 50.24 (37.8) 58.06 (36.2) 79.46 (24.3) 57.47 (38.3) 64.19 (25.1)

Figure 1 Correlation between completeness and accuracy scores on the Mental Model Survey for the pre-training (Left)
and post-training conditions (Right)

Survey score, was significantly related to post-training
Overall Mental Model Survey scores (F (1, 32) =
23.412; p = 0.00003; η2 = 0.422). The ANCOVA
found that there was no main effect of the training
method on the post-training scores after adjustment for
the pre-training scores (F (2, 32) = 2.208; p = 0.126; η2
= 0.121). Figure 4 shows the pre-training and post-
training mean Overall Mental Model Survey scores
across all three training groups.

Additional analyses were conducted to analyze the
differences between the groups in terms of the
completeness and accuracy scores. An ANOVA found
a main effect of both survey time (F (1, 32) = 45.408; p
< 0.00001), and training method (F (2, 32) = 4.276; p <
0.0226) for the completeness only scores, and a main
effect of survey time (F (1, 32) = 13.973; p = 0.0007)
for the accuracy only scores (Figures 5 and 6).

Correlation between Overall Mental Model Survey and
Trust scores

Previous work has reported that training did not have
any impact on the user’s post-training overall trust
scores (Pai et al., 2021). However, it is unknown
if there is a relationship between the mental models
scores and overall trust scores. A Pearson’s product-

moment correlation test was conducted to examine the
correlation between the overall mental model scores
and the overall trust scores. The correlation test
revealed no significant correlation between the pre-
training Overall Mental Model Survey scores and the
pre-training overall trust scores, r (34) = 0.022; p =
0.898. The test also revealed no significant positive
correlation between the post- training Overall Mental
Model Survey scores and the post-training overall trust
scores, r (34) = 0.254; p = 0.135. (Figure 7).

4 Discussion

The study examines the impact of training on drivers’
mentals models about the functions, operations, and
limitations of Adaptive Cruise Control (ACC). While
training has been used to

improve driver knowledge and performance, it has not
been used as often in the vehicle automation domain,
and training in this context is still an under-researched
subject. Moreover, findings regarding the impact
of training of drivers’ knowledge about automation
systems have been mixed, with some showing
significant impact on driver knowledge (Forster et al.,
2019; Gaspar et al., 2020), and others showing very
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Figure 4 Overall pre- and post- Mental Model Survey scores

Figure 5Mean pre- and post- scores for Completeness items on the Mental Model Survey

limited impact (Noble et al., 2019;Mueller et al., 2020).
In this study, participants were randomly assigned to
one of the two training groups (Text-based training or
System Visualization training) or to a control group
(who received sham training). A Mental Models
Survey was used to assess participants’ mental models
about ACC.

The results from the study, i.e., ‘Does training improve
users’ mental models about Adaptive Cruise Control?’
indicate that there was an improvement in the Overall
Mental Model Survey scores and that all groups
experienced an improvement in their mental models
about ACC after receiving their assigned training

material. However, there was no significant main
effect of the training method. The text-based training
had the highest increase in scores, followed by the
Visualization group, and then the control group, but
these were not significantly different. Therefore,
Hypothesis I, which assumes training will help improve
mental models can be accepted, but Hypothesis II,
which assumed that the Visualization groupwould have
better scores than the other two is rejected.

Despite the insignificance of the differences
(potentially explained by the smaller sample size),
the direction of the increase in mental model scores
is encouraging. The finding provides reasonable
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Figure 6Mean pre- and post- scores for Accuracy items on the Mental Model Survey

Figure 7 Correlation between overall scores and Trust for the pre-training (Left) and post-training conditions (Right)

motivation for future research in development and
deployment of text-based or visualization-based
training programs to improve drivers’ mental models
about ADAS potentially leading to improved driver
interactions and reduced likelihood of operator errors
while using ACC.

Trust deficiencies after experiencing system failures
or malfunction events could be remedied if the driver
had prior knowledge about them (Beggiato & Krems,
2013). However, in this study, overall mental model
scores and overall trust scores were not significantly
correlated, and we found no relationship between the

driver’s mental models and trust in ACC, thus rejecting
Hypothesis III. This raises a question about trust in
a system related to knowledge of a system, and trust
related to experiencing a system’s limitations or edge
cases. While this study was unequipped to measure
trust after experiencing a system, this may be an
important gap to address in order to understand user
perception and acceptance of technology based on
knowledge versus experience.

While differences were not statistically significant,
the results show that the text-based training had the
highest post-training improvements. Literature shows
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that majority of learners are visual learners, so the
improvement in mental models of drivers receiving
the Visualization method is supported by previous
studies (Sadoski & Willson, 2006; Tabbers et al.,
2004). There was also an improvement in the Text-
based method and although not completely in line with
previous literature (Mehlenbacher et al., 2002;Wickens
et al., 2015), one explanation could be that presenting
material from the owner’s manual in a simplified
and accessible manner reduced time spent seeking
relevant information about ACC. The users from the
visualization training group also had a higher increase
in scores compared to the control group, potentially
driven by the simplification of the text and replacement
of text-based information with a visualization. Future
work could explore the impact of this visualization
versus text-based approaches on users with varying
learning styles (say, visual-learner, or auditory, or other
learning styles).

This study has a few important limitations. One major
limitation of this study is the small sample size. We
collected pre- and post-training survey measures from
36 participants (M= 31.58 (10.23) years; Female = 22).
The study and the training session were conducted
online using video conferencing due to the restrictions
brought forth by the COVID-19 pandemic. For
higher validity, ideally data collection would have been
conducted on a driving simulator or on the road to
test the transfer of knowledge. Drivers operating and
interacting with ACC may provide insights about the
changes to their mental models post-training and actual
driver behaviors. This would also help evaluate if
training and an improved mental model help calibrate
Trust pre- and post- training. Similarly, we were
limited by the nature of data collection and therefore
could only collect dependent measures related to self-
reported survey measures which may suffer from
questionable reliability and bias from the participants’
end (Schacter, 1999).

5 Conclusions

This study investigated the impact of various training
approaches (and content) on drivers’ mental models of
Adaptive Cruise Control, an important and relatively
common and widespread ADAS feature. There is fast
growing evidence that the clarity and depth of drivers’
understanding of advanced vehicle technologies will
directly affect how well and how appropriately
drivers use these technologies in their vehicles. It

is also clear that the promised safety benefits of
these technologies will not materialize unless drivers
use them appropriately. Therefore, it is paramount
that drivers’ understanding of these complex and
sophisticated technologies are accurate and complete.
This means that drivers’ mental models of these
complex systems must be rich, accurate, and contain all
the information about what the system’s capabilities,
and perhaps more importantly, its limitations are.
Therefore, the objectives of this research were (a)
to examine if training can indeed improve drivers’
mental models of such systems (in this case, ACC),
(b) whether there are differences in how this training is
presented to the drivers, and (c) to understand accuracy
and completeness as separate factors when describing
one’s mental models.

The results of this online study show promise for
training as a method for improving users’ mental
models, and more importantly offers some evidence
that the type of training may matter, especially if
the training can simplify, or make more accessible,
the information about these complex systems. The
findings may have implications in terms of designing
and deploying ADAS in vehicles to minimize misuse
or disuse of such systems due to incomplete mental
models or mistmatched expecations. These findings
also underline the importance of training approaches
or platforms in promoting safe usage of systems as a
result of improved knowledge and understanding due
to training. The results could indicate that succinct and
focused training content such as those seen in the text-
based and visualization methods could be helpful in
improving mental models. However, further research
may be needed to understand the effectiveness of
different delivery platforms and informational content.
Future works could aim to examine the effects of more
immersive or interactive approaches such as video or
virtual- reality based platforms, that can help drivers
quickly understand complex concepts and features in
a visual and immersive manner. Finally, this study
presents findings that sheds light on the potential
benefits of training and adds to the somewhat scant
literature about training in ADAS and the automated
driving domain.
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A Completeness and accuracy of mental models survey

ID Question type Survey items
1.1 Completeness ACC can help maintain the vehicle’s speed.
1.1.1 Accuracy ACC can work on all road types (e.g. residential areas, highways, etc.).
1.1.2 Accuracy ACC works on an empty lane (when there are no vehicles in front).
1.2 Completeness The driver can control how fast ACC ‘drives’ the car.
1.2.1 Accuracy ACC slows down the vehicle when it detects driver inactivity.
1.2.2 Accuracy When first activated, the ACC controls the vehicle at the speed the vehicle is currently

traveling at.
1.3 Completeness ACC can regulate the vehicle’s distance from the vehicle in front.
1.3.1 Accuracy ACC can regulate the vehicle’s distance from any type of lead vehicle.
1.3.2 Accuracy When ACC is regulating a vehicle’s distance, there is no limit to how near or how it can

follow another vehicle
1.4 Completeness The driver can select at what distance ACC will help their vehicle to follow another vehicle.
1.4.1 Accuracy ACC helps a vehicle stay at a selected distance from the vehicle in front by signaling the lead

vehicle to slow down if the distance between them is too large.
1.4.2 Accuracy When first activated, the ACC has a default following distance that can be modified by the

driver.
1.5 Completeness ACC can be ‘turned OFF’ by the driver at any time.
1.5.1 Accuracy ACC may cancel itself in certain situations.
1.5.2 Accuracy The driver can override the ACC and choose to manually overtake the front vehicle.
1.6 Completeness A driver can activate ACC even without a lead vehicle in front.
1.6.1 Accuracy ACC remains activated even if a lead vehicle changes lanes.
1.7 Completeness ACC works on all roadway conditions.
1.7.1 Accuracy ACC may not work in every weather condition.
1.7.2 Accuracy ACC may not work in poor lighting conditions.
1.7.3 Accuracy ACC can work on all roadway shapes (e.g. Merge, Curves, Slopes, etc.).
1.7.4 Accuracy ACC cannot work if the radar sensors are dirty.
1.8 Completeness ACC can help a vehicle react to all moving traffic in its lane.
1.8.1 Accuracy ACC can help a vehicle react to vehicles suddenly ‘cutting in’ in front of it.
1.8.2 Accuracy ACC cannot help a vehicle to automatically stay at the selected distance behind bicycles and

motorcycles.
1.8.3 Accuracy ACC can help a vehicle react to oncoming traffic.
1.8.4 Accuracy ACC can detect other vehicles which are behind the vehicle.
1.9 Completeness ACC cannot help a vehicle react appropriately to all objects in front of the vehicle.
1.9.1 Accuracy ACC can help a vehicle react to non-standard shaped vehicles (eg. Tractors, Trailers, etc.).
1.9.2 Accuracy ACC cannot help a vehicle to react to stationary objects on the road.
1.9.3 Accuracy ACC does not help a vehicle react to pedestrians and animals.
1.10 Completeness ACC is available in high-end vehicles as well as in many economy vehicles.
1.10.1 Accuracy ACC can be installed by the buyer into their vehicle any time after purchase.
1.10.2 Accuracy ACC features may differ between manufacturers.
1.11 Completeness ACC is designed to allow a driver to drive with their hands off the wheel.
1.11.1 Accuracy Some ACC systems may alert a driver if their hands are not on the wheel.
1.11.2 Accuracy ACC requires that the driver has their eyes on the road at all times.
1.12 Completeness The driver does not need to monitor traffic when ACC is activated.
1.12.1 Accuracy ACC cannot alert a driver if erratic driving is detected from the vehicle ahead.
1.12.2 Accuracy While driving with ACC activated, the driver can safely use their smartphone for texting.
1.13 Completeness ACC does not monitor traffic signs and signals.
1.13.1 Accuracy ACC can react to traffic signs (e.g. slippery roads).
1.13.2 Accuracy ACC cannot stop the vehicle at stop signs or stop lights.
1.14 Completeness ACC cannot steer the vehicle automatically.
1.14.1 Accuracy ACC can steer the vehicle, but only to keep the vehicle within the travel lane.
1.15 Completeness The system is capable of operating without any involvement from a human driver.

Continued on next page
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Table A.1 continued
1.15.1 Accuracy ACC can help drivers navigate automatically.
1.15.2 Accuracy ACC is a ‘self-driving’ feature.
2.1 Completeness ACC works at any speed.
2.1.1 Accuracy The vehicle needs to be driving at 25 mph to turn on ACC.
2.1.2 Accuracy ACC can operate the vehicle at the selected speed even if there is no vehicle in front.
2.1.3 Accuracy ACC can automatically adjust the vehicle’s speed if it encounters a slower moving vehicle in

front.
2.2 Completeness Most ACC systems require lane markings to work.
2.2.1 Accuracy ACC can change a vehicle’s lanes automatically while activated.
2.2.2 Accuracy ACC can pass (overtake) the vehicle in front without driver intervention.
2.3 Completeness Some types of ACC can bring the vehicle to a complete stop and then resume driving under

certain conditions without driver intervention.
2.3.1 Accuracy In some types of systems, ACC will remain activated if the lead vehicle comes to a full stop at

stopped traffic.
3.1 Completeness ACC can be ‘turned on’ or ‘turned off’ using buttons on the steering wheel.
3.1.1 Accuracy The driver can turn off ACC using brake pedals.
3.1.2 Accuracy The driver can turn off ACC using brake pedals.
3.2 Completeness ACC turns on automatically when the engine is started.
3.2.1 Accuracy There is a ‘Resume’ button on the steering wheel to restart ACC once cancelled.
3.3 Completeness A driver can activate ACC via buttons or levers on the steering wheel.
3.3.1 Accuracy The driver cannot deactivate ACC using the brake pedal.
3.3.2 Accuracy The driver can temporarily deactivate the ACC using the gas pedal.
3.3.3 Accuracy The driver can temporarily deactivate the ACC using a button or lever on the steering wheel.
3.4 Completeness ACC speed settings can be controlled by the driver using buttons or levers on the steering

wheel.
3.4.1 Accuracy The driver can change the speed that the ACC is set to by simply pressing the gas pedal.
3.5 Completeness The ACC distance settings cannot be controlled by the driver using buttons on the steering

wheel.
3.5.1 Accuracy The driver can adjust ACC’s desired distance by using the brake pedal.
3.6 Completeness The status of the ACC is shown on the instrument panel.
3.6.1 Accuracy The instrument panel has a sign to indicate that the ACC is turned off.
3.6.2 Accuracy The instrument panel has a sign to indicate that ACC is activated.
3.6.3 Accuracy The speed setting selected by the driver is displayed on the instrument panel.
3.6.4 Accuracy The selected following distance setting set up by the driver cannot be displayed on the

instrument panel.
All items were responded to on a scale of 1 (strongly disagree) to 6 (strongly agree).
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