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Abstract:Autonomous vehicles (AVs) parking has been a subject of interest from various researchers;
however, the focus has been on the parking demand, algorithm, and policies, while the safety aspect has
received less attention, perhaps due to the lack of AV crash data. This study evaluated the magnitude
and pattern of AV parking-related crashes that occurred between January 2017 and August 2022 in
California. The study applied descriptive analysis, unsupervised text mining, and supervised text
mining (Support Vector Machine, Naïve Bayes, Logitboost, Random Forest, and Neural network) with
resampling techniques. It was indicated that parking-related crashes constitute about 16% of all AV
crashes, most of them are likely to impact the AV on the rear or left side. The unsupervised text
mining results showed that AVs in the conventional mode of operation, reversing, and parallel parking
are among the key themes associated with parking-related crashes. The Support Vector Machine,
Logitboost, Random Forest, and Neural network showed relatively high prediction accuracy. The
important features from these supervised text mining approaches were conventional mode, reservsing,
passenger vehicle, parallel parking, which confirm the preliminary findings in the unsupervised text
mining. The implications of the findings to operators and policymakers are included in the study.
Findings from this paper could be used to introduce measures to reduce AV parking-related crashes.
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1 Introduction

Autonomous vehicles (AVs) are becoming a reality,
with various levels of automation being tested and
operating inmixed traffic. Many cities and jurisdictions
across the globe have approved AV testing. For
instance, in America alone, there are over a hundred
AV testing locations, including testing in mixed
traffic in California, Arizona, New York, and Nevada,
among others (NHSTA, 2022). In addition to the
testing, individuals operate AVs of varying levels
of automation, as indicated by the most recent
statistics of AV penetration in the United States and
globally (Statistica, 2022).

As the AVs penetration continues to increase,
researchers have shown interest in various aspects,
including their safety and operations (Khattak et al.,
2020; Mahdavian et al., 2019; Morando et al., 2018;
Novat et al., 2023; Parsa et al., 2021; Schoettle & Sivak,
2018; Favarò et al., 2018). Several approaches have
been used to assess the safety implications of AVs,
including traffic simulation, survey questionnaires,
virtual reality, observational studies and analyses of
disengagement reports, and AV-involved crash data.
Some studies reported that AVs improve road safety by
eliminating human errors associated with conventional
vehicles (Mahdavian et al., 2019; Morando et al.,
2018; Parsa et al., 2021). Other studies revealed
that AVs have higher crash rates per million miles
than conventional vehicles (Schoettle & Sivak, 2018;
Favarò et al., 2018; Pokorny & Høye, 2022). Further
analysis showed that AVs were mostly not at-fault,
and the severity of crashes involving AVs was lower
than the severity of crashes involving conventional
vehicles (Mousavi et al., 2020; Schoettle & Sivak,
2018). Even when they were at fault, they were
more likely to be in conventional mode (Pokorny &
Høye, 2022; Kutela et al., 2022b). In recent years,
the availability of the crash data involving AVs in
California has opened a door for researchers to explore
crash characteristics and associated factors (Boggs
et al., 2020; Xu et al., 2019; Kutela et al., 2022a).

NHSTA (2022), Bahrami & Roorda (2022), Lee et al.
(2009), Chan et al. (2021), Nakrani & Joshi (2022),
and Hsieh & Özguner (2008) discussed that although
there is a significant interest in improving parking-
related AV operations and safety, little is known about
the scale of parking-related crashes, perhaps, due to the
scarcity of actual crash data. However, the availability
of crash data involving AVs in California opened

doors for numerous research DMV (n.d). Therefore,
this study explores the scale and patterns of parking-
related AV crashes. The study intends to answer the
following questions: (a) What is the scale of parking-
related AV crashes? (b) Do the characteristics of
parking-related AV crashes differ from other crashes?
(c) What recommendations could be provided from
the critical patterns in parking-related AV crashes?
Although parking-related crashes are likely to be
property damage only, damaged AV features such as
sensors may require substantial amount of funds to
replace them. Thus, it is important to understand the
associated factors in order to reduce the likelihood of
such crashes to happen. The remaining part of the
manuscript is organized as follows. The next section
discusses the literature summary of the studies on the
safety effects of AVs, followed by the details on the
methodology and data used in the analysis. Results
and discussions are then presented followed by the key
takeaways and directions for future research.

2 Literature review

Various researchers have been interested in AV parking
from different perspectives (Bahrami & Roorda, 2022;
Chan et al., 2021; Lee et al., 2009; Nakrani & Joshi,
2022). A policy-based study, Bahrami & Roorda
(2022), indicated that AV users would redirect their
vehicles to park at their homes if they had to pay
to use a parking facility. The same study revealed
that AVs would travel between 12 and 47 minutes
in the downtown setting to find cheaper parking. Lee
et al. (2009) developed algorithms to solve three
parallel-parking issues: trajectory planner, decision
kernel, and trajectory tracking control. The algorithms
could determine feasible parking locations, alternative
parking routes, and re-performing parking routing
if the targeted parking space has been occupied.
Such operations would save not only time but also
improve safety. The algorithms developed by Nakrani
& Joshi (2022) would improve safety by avoiding
static and moving obstacles. The developed model
was simulated, and the results indicated a reasonable
performance for parallel parking.

Although AV parking has been of interest, little has
been studied using actual crash data involving AVs.
A scan of studies that used real AVs crash data from
California suggests mixed findings. However, only
two studies, Ren et al. (2022) and Xu et al. (2019),
have some details regarding parking-related crashes.
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Almost all studies reported a low proportion of injury
crashes for AV-involved crashes (Das et al., 2020; Song
et al., 2021). Several studies have extensively studied
collisions between AVs and conventional vehicles.
Factors like vehicle/personal attributes (driving mode
and non-motorized road users), road attributes like
parking and lighting, and crash attributes like the
manner of collision were considered in previous studies
involving AVs. Results from these studies have been
summarized in Table 1.

According to Ren et al. (2022), on-street parking is
associated with an increased likelihood of severe AV
crashes. However, the observation does not indicate
that the AV was involved in parking-related crashes.
Similarly, Xu et al. (2019) showed that 40% of AV
crashes occurred at locations with roadside parking.
The authors elaborated that such a high proportion may
be due to a limited sight distance. However, this study
also did not indicate whether the said proportion of
crashes involved parking-related activities.

The literature review shows an attempt to understand
various characteristics of AV-involved collisions,
including a few studies on parking-related collisions.
However, two significant limitations can be observed
in the existing studies with regard to parking-related
crashes: (i) relatively few studies focused on parking-
related crashes applied descriptive analysis and did
not evaluate the associated factors; (ii) studies that
evaluated the associated factors for AV-involved
crashes combined parking and non-parking related
crashes. The combined analysis did not show the
characteristics of parking-related crashes, making it
hard to determine the appropriate measures to reduce
such collisions and improve AV safety in parking
locations. Therefore, this study investigated factors
associated with parking-related crashes involving AVs
using supervised and unsupervised text mining.

3 Methodology

This study used crash narratives to uncover the key
patterns among factors associated with parking-related
crashes. It applied supervised and unsupervised text
mining of crash narratives to understand and distinguish
the critical patterns in parking and non-parking-related
crashes. Unsupervised text mining involves the use
of text network analysis. In contrast, supervised text
mining used four classifiers, including Support Vector
Machine (SVM), Naïve Bayes (NB), Random Forest
(RF), and Neural Network (Nnet).

3.1 Text network analysis

Text network analysis (TNA), an unsupervised
text mining tool, was utilized to express the
interconnectedness between various keywords. Before
its use in transportation, the TNA approach had been
used extensively in literature and linguistics Hunter
(2014). TNA has emerged as the preferred text mining
approach in solving modern problems due to its ability
to reveal and enable visualizations of different topic
patterns (Jiang et al., 2020; Paranyushkin, 2012). Other
areas where text analysis has been used include traffic
safety analysis and operations (Boggs et al., 2020;
Kutela et al., 2023; Lee et al., 2023; Kutela et al., 2022a)
and bibliometrics of transportation studies (Jiang
et al., 2020; Kutela et al., 2023, 2021b). In TNA,
nodes representing keywords and edges representing
connections are used to map unstructured text data.
Figure 1 shows a typical text network topology.

Figure 1 An illustration of text network topology
(Kutela et al., 2021b)

The TNA process starts with data cleaning and
converting unstructured to structured data. This process
includes removing redundant words and symbols
peculiar to the study design and converting upper-case
to lower-case letters. The unstructured data is further
converted into a matrix of keywords and the frequency
of occurrence included in the text data. The resulting
text data, which is structured, is mapped to create a text
network.

In the network (Figure 1) the node’s size represents
the frequency of the keyword, while the size of the
edge represents the frequency of the co-occurrence of
keywords (Kutela et al., 2021a). Keywords that appear
close in the narratives also appear close in the network.
Therefore, to better understand these text network
patterns, measures such as ‘keyword frequencies’, ‘co-
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occurrence frequency’, and ‘collocation frequency’
are used. The collocation frequency provides richer
information than co-occurrence frequency as it presents
the keywords that appear next to each other (Benoit
et al., 2018; Blaheta & Johnson, 2011; Novat et al.,
2023; Kutela et al., 2022b). In addition, the network
topology was used to distinguish the patterns of the
parking- and non-parking-related crashes.

3.2 Text classifiers

Five supervisedmachine learning algorithms, including
SVM, NB, RF, Logitboost, and Nnet were used to
classify parking-related crashes. The ability of these
machine learning algorithms to classify parking AV-
involved crashes was compared based on Accuracy,
Precision, and F-1 score, described in Equation (1),
Equation (2) and Equation (3) respectively:

Accuracy =
TP + TN

Total population
, (1)

Precision =
TP

TP + FN
, (2)

F − 1 score =
2 ∗Recall ∗ Precision

Recall + Precision
, (3)

whereby

• TP: True Positive, actual positive values correctly
classified as positive;
• TN: True Negative, actual negative values correctly
classified as negative;
• FP: False Positive, actual negative values
incorrectly classified as positive;
• FN: False Negative, actual positive values
incorrectly classified as negative.

All the classifiers mentioned above use a different
approach to classify the crash. Joachims (1998);
Pranckevičius & Marcinkevičius (2017) and Yuan
et al. (2019) provide detailed information about each
classifier. Below is a brief description of each classifier
used in this study:

• SVM is a classifier that uses a hyperplane to separate
the classes of documents/data by maximizing the

margin between classes’ closest points. The
algorithm plots all data items as points in n-
dimensional space and then finds the hyperplane
that best differentiates the two classes of the
document/data.

• NB is a family of probabilistic algorithms based on
Bayes theorem and is considered a simple classifier.
The primary assumption for NB is that the presence
of one feature does not affect other features. By
utilizing NB one can obtain the probability of
observing certain outcomes, given that specific
predictors were observed.

• RF classifier works by establishing and aggregating
predictions from several individual decision trees
of varying depths, which works as an ensemble. It
searches for the best feature from random decision
trees to improve classification accuracy.

• Nnet algorithm is inspired by the biological neural
network, which imitates the human brain learning
process. The Nnet classifier uses documents as
input nodes and assigns features weight to its input
until the final classification is reached. Then, it uses
backpropagation, which implies that misclassified
cases are propagated back using neural networks
trying to identify the node that caused the error.
After the node has been identified, the weights are
added to minimize the error.

• Logitboost is a boosting classification algorithm
that strives to obtain the optimum classifiers by
fitting an additive model that minimizes a logistic
loss.

3.3 Data processing

The dataset used for this study is obtained from
crash narratives. The dataset is further classified into
parking- and non-parking-related AV crashes. The
parking-related AV crashes included all crashes with
at least one vehicle (both AV or at least one AV and
one conventional car) involved in a crash when parking
or already parked. Before classifying the dataset, all
parking-related terms were removed. This process was
necessary to ensure that the algorithm could easily
classify parking-related crashes without the presence
of crucial parking terms like parked, parking, and
reversing. This method is consistent with an approach
used by Arteaga et al. (2020) when analyzing the injury
severity of crashes using an interpretable text-mining
approach.
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Since AV parking-related crashes constitute a small
proportion (about 14.4%) of all AV-involved crashes,
the issue of class imbalance might arise. To address
this, three resampling algorithms—SMOTE, over-
sampling, and under-sampling (Kitali et al., 2019)—
were considered to take care of class imbalance.
In addition, resampling techniques like cross-
validation and bootstrap approaches were used to
increase the sample size (Kitali et al., 2019). From
observations, it was realized that the combination
of under-sampling and bootstrap yielded models
with reasonable classification accuracy. Different
proportions of training and testing data sets were
examined in the quest for the ratio that yields a
higher score. Finally, predictions were obtained based
on a model developed using 70% of the data for
training and 30% for testing. The features used for
classifying parking-related crashes were developed
from the text data using standard text conversion
procedures. The conversion procedures involve
cleaning, generating n-gram features, and generating
a document matrix (Kwayu et al., 2020). Concerning
cleaning the data, unstructured text was converted into
the corpus. Also, punctuation, symbols, numbers, and
stemming (i.e. reducing a word-to-word root) were
removed. On the other hand, generating a document
matrix covers determining each n-gram and converting
the corpus to the document matrix. The document
matrix was then used for AV parking-involved crash
classification tasks.

4 Study data

The State of California has been testing AVs in mixed
traffic since 2014. The AVs operating in California
roadways vary by the levels of automation, whereby
the lowest level is ADAS level 2, and the highest is
level 4. The state requires any crash involving AV
to be reported within ten days. Although crash data
has been collected, crashes that occurred before 2017
were not well documented. Thus, this study used 460
AV crashes collected by the California Department of
Motor Vehicles (CDMV) between January 2017 and
June 2022.

Vehicle operators submit crash reports that contain the
crash narratives to the CDMV in pdf format. Based
on these narratives, several variables were manually
extracted, including the location and time of crashes,
the directional movement of the AV and CV (connected
vehicle), and the type of driving mode during the

collision. Google Maps was also employed to get other
roadway-related variables by following the address
provided in the crash report.

To obtain crash location information, section 5 of the
crash report (Figure 2) was used. The narratives clearly
state the location of the crash. For instance, part of
the narrative in Figure 2a states that ‘On December 11,
2021, at 2:28 am PST a Waymo Autonomous Vehicle
(Waymo AV) operating in San Francisco was in a
collision involving a concrete post in the parking lot
at 1900 Noriega Street...’. The narrative suggests that
the crash occurred at the parking lot. Thus, it is a
parking-related crash. On the other hand, a portion of
the narrative in Figure 2b states that ‘...a Zoox vehicle
in autonomous mode was stopped at a red traffic signal
at the intersection of Harrison and 11th Streets in
San Francisco with its left turn signal engaged. After
the traffic signal changed to green and while waiting
for an opening to turn left onto Harrison Street, the
Zoox vehicle was struck by a passenger from behind…’,
suggesting that the crash was at an intersection.

5 Non-parking related crashes: descriptive
summary

Overall, among 460 crashes, 15.7% (72 crashes) were
parking-related crashes. Figure 3 shows the distribution
of AV crashes during the period under consideration
(2017–2022). The number of parking-related and non-
parking-related crashes significantly differed over the
years. The total number of AV crashes over the years
shows an upward trend except in 2020. Also, the
highest number of crashes was recorded in 2022 (23.9%
of the total), while 2020 recorded the lowest number
(9.3% of the total). This could be attributed to COVID-
19 and the lower number of trips recorded nationally in
2020. The 12 parking-related crashes in 2020 represent
the highest proportion (28%) of parking-related crashes
per year, while in 2017, no parking-related crashes
were observed. Although the year has not ended,
the statistics suggest that 2022 might record the most
significant number of parking-related crashes.

Figure 4 shows the number of crashes at different times
of the day. For both parking and non-parking-related
crashes, significant peaks were observed between
8:30 am and 9:30 am and between 3:30 pm and 4:30 pm.
The parking-related crashes follow a similar trend to the
non-parking-related crashes, except for the early night
period (8:00 pm to midnight).
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Figure 2 Typical narratives for parking and non-parking related crashes

Figure 3 Distribution of AV crashes by year

Figure 4 Distribution of AV crashes by time of the day

Collisions involving the rear of AVs constituted about
50.7% of the total crashes, as shown in Figure 5. This
finding is in line with previous studies showing rear-
end collisions as significant in AVs (Ashraf et al.,
2021; Liu et al., 2021). Other hit sides are the
left side (24.3%), right side (12.6%), and front side
(12.4%). While most non-parking-related crashes

involved the rear side of the AVs, the distribution of
parking-related crashes is relatively similar across the
sides of the AVs. Such observation strengthens the
importance of characterizing parking-related crashes
because non-parking-related crashes can overshadow
latent characteristics.

Figure 5 Distribution of AV crashes by the side hit

6 Results and discussion

This section presents the results and discussion of
this study. It is divided into two major subsections:
text mining and discussion, and model results and
discussion. The text mining part presents the results
and discussion from the text mining, while the model
section avails the results and discussion from the
statistical models.
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6.1 Text networks results

The networks results and discussion covers the
discussion on parking-related and non-parking-
related crashes. The discussion is based on text
networks’ metrics, including keywords frequency, co-
occurrences, and collocations

6.1.1 Parking-related crashes

Table 2 and Figure 6 show the text network and
main keywords associated with AV crashes at parking
spaces. It was found that the significant keywords
include vehicle, mode, parked, passenger, damage,
street, and rear. The keywords connected to vehicle
indicated that crashes were likely to involve passenger
vehicles. Also, the keyword vehicle was connected to
the keyword unoccupied using thick lines, meaning that
there were no occupants in parked vehicles involved in
the crashes. Unlike non-parking related crashes, the
node for keyword conventional was more significant
than for keyword automated. This implied that AVs
involved in crashes at parking locations were more
likely to be in conventional than autonomous mode.
As expected, parking and parked were other major
keywords in the network, alluding to crashes in parking
zones or parking lots. The size of the node for keyword
parallel was more significant than the keyword lot,
indicating a higher likelihood of crashes involving AVs
in on-street parking spaces than in parking lots.

The keyword damage was highly connected to
keywords side, mirror, door, minor, and no injuries.
Contrary to the non-parking related crashes, it was
revealed that the AV crashes in parking locations were
likely to cause damage to the side mirrors. The network
revealed that the parking crashes might also involve
door damage. Moreover, the keywords minor and no-
injuries indicate the severity of these crashes. As a
result, police are not called or engaged in most of these
crashes. The rear and its related keywords, including
made contact, bumper, front, and left, indicate the
nature of the collisions in parking lots. They are also
supported by keyword reversing, which suggests a
common vehicle movement when parking. It could
therefore mean crashes are more likely to involve
contact between the front and rear bumpers when a
driver reverses to get into or out of the parking spot.
However, it is unclear what the keywords left and right
imply in crashes involving AVs at parking locations. It
is important to note that crashes at parking locations
were less likely to affect non-motorized users, as

proven by the absence of keywords such as bicyclists
or pedestrians. Moreover, lighting was not among the
network keywords indicating the insignificance effect
of lighting on AV crashes at parking locations.

6.1.2 Non-parking related crashes

Figure 7 and Table 3 present the text network
and associated main keywords for crashes involving
AVs at non-parking locations (intersections and non-
intersections). It can be observed that eight primary
keywords, vehicle, mode, rear, bumper, damage,
passenger, autonomous, and street stand out from
Figure 7. The network suggests that passenger
vehicles were crucial participants in non-parking-
related crashes involving AVs. This might be true
since autonomous vehicles usually operate in urban
locations where passenger vehicles dominate. The non-
parking text network indicated that AVs operated more
in autonomous mode than in conventional mode. This
finding is opposite to results found in parking-related
crashes. This inference was made by comparing the
node sizes of autonomous and traditional keywords
in text networks of both parking- and non-parking-
related crashes. The thick line between the keywords
autonomous and mode indicates that the vehicle was
operating in autonomous mode.

The node size of the keyword rear was more significant
than the keywords front and left. The keyword rear
appeared in 375 observations, while front and left were
reported in 205 and 306 observations, respectively. The
keyword rear was mainly connected to the keywords
bumper, damage, made-contact, and minor bumper,
damage, and minor. These keywords are indicative of
most crashes involving AVs at non-parking locations
being rear-ended collisions. The thick lines between
these keywords reveal that damage associated with
rear-end crashes is likelyminor when contacts are being
made with the rear bumper. In addition, it was revealed
that rear bumper and rear damage were among the most
co-occurring words suggesting that crashes at non-
parking locations were mainly rear-ending collisions.
Similar to parking-related crashes, thick lines between
the keywords no-injuries, not-called, police, and scene
imply that police were likely not called in crashes
not involving injuries. In contrast to parking-related
crashes, the presence of the keyword bicyclist reveals
that AVs are likely to be involved in crashes with non-
motorized vehicles in non-parking locations.

8
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Figure 6 Text network for parking-related crashes

Table 2 Extracted keywords for parking-related crashes

Frequency Co-occurrences Collocations
freq∗ docfreq∗ count count Z-score

1 Mode 80 64 Passenger vehicle 64 Passenger vehicle 48 15.3
2 Damage 65 52 Conventional mode 54 Minor damage 35 13.7
3 Vehicle 120 48 Parked vehicle 49 No-injuries police 22 12.9
4 Conventional 54 47 Minor damage 39 Operating conventional 18 11.6
5 Made-contact 47 45 Damaged vehicle 37 No-injuries reported 18 11.6
6 No-Injuries 44 44 Vehicle made contact 35 Operating san-francisco 17 11.3
7 Street 79 41 Vehicle bumper 30 Rear bumper 18 11.3
8 Parked 62 38 Front bumper 30 Sustained minor 32 11.2
9 Rear 56 38 Police not-called 29 Test driver 25 11.0
10 Collision 39 37 Front vehicle 28 Police not-called 29 10.8
11 Minor 42 35 Damage bumper 28 Front bumper 15 10.6
12 Driver 52 33 Rear bumper 27 Reported scene 10 10.4
13 Parking 48 32 Rear damage 27 Involved collision 19 9.8
14 Not-Called 32 32 Autonomous mode 27 San-Francisco California 13 9.6
15 Bumper 45 31 Parked street 26 Vehicle sustained 17 9.3
16 Operating 42 31 Test driver 25 Parked vehicle 20 8.9
17 Police 31 31 Side vehicle 25 California collision 13 8.9
18 Reversing 34 29 Parking spot 25 Mode involved 12 8.7
19 Side 51 28 Parked side 25 pm PST 6 8.7
20 Front 45 28 Parking reversing 23 Damage front 12 8.6

∗freq = frequency; docfreq = document frequency
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Figure 7 Text network for non-parking related crashes

Table 3 Extracted keywords for non-parking related crashes

Frequency Co-occurrences Collocations
freq∗ docfreq∗ count count Z-score

1 Mode 451 353 Autonomous mode 314 Rear bumper 186 35.7
2 Automated 317 253 Rear bumper 289 Passenger vehicle 203 33.0
3 Damage 313 244 Passenger vehicle 247 Minor damage 155 30.6
4 Rear 375 241 Rear damage 212 Sustained minor 131 30.5
5 No-Injuries 238 238 Damage sustained 192 No-injuries police 104 29.7
6 Made-contact 232 227 Made contact rear 191 No-injuries reported 103 29.5
7 Vehicle 525 216 Operating mode 186 Operating automated 109 29.0
8 Operating 238 216 Vehicle damage 184 Made-contact rear 104 26.9
9 Police 214 204 Rear vehicle 176 Test driver 88 26.4
10 Driver 273 197 Rear bumper 163 Reported scene 61 24.4
11 Bumper 308 195 Bumper sustained 149 Left turn 71 23.7
12 Left 306 189 Conventional mode 148 Autonomous mode 309 23.4
13 Traveling 258 177 Rear sustained 137 Red light 61 23.2
14 Street 373 172 Minor rear 137 Mode traveling 85 22.5
15 Stop 234 168 Traveling mode 134 Damaged front 67 22.3
16 Not-called 158 158 Operating automated 129 Conventional mode 140 22.2
17 Front 205 157 Minor sustained 128 Operating conventional 56 21.9
18 Scene 177 157 Intersection street 119 Police not-called 151 21.8
19 Right 230 147 Traveling street 115 Damage rear 78 21.2
20 Intersection 206 146 No-injury reported 106 Involved collision 49 21.1

∗freq = frequency; docfreq = document frequency
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6.2 Machine learning results

The default performancemeasures of the five classifiers
that were considered without resampling and imbalance
treatments are shown in Table 4. Among the used
classifiers, Nnet had the highest prediction accuracy
(90.8%) but was weak in predicting only 40% of
parking-related crashes. Conversely, the Nnet classifier
predicted 97.4% of non-parking-related crashes. RF
and SVM had 100% specificity, meaning they could
predict all non-parking-related crashes. Like Nnet, RF
and SVM also predicted low parking-related crashes,
6.7%, and 0%, respectively. This study, however,
intends to understand the parking-related crashes,
therefore, in addition to the overall prediction accuracy,
the sensitivity score is the most critical performance
metric. The NB classifier has the maximum sensitivity
result, but its overall prediction accuracy is lower than
other classifiers. This finding calls for the need for data
imbalance treatment.

Table 4 Performance metrics for text classifiers (without
resampling or imbalance treatments)

Accuracy Sensitivity Specificity
SVM 88.5% 0.0% 100.0%
NB 40.8% 73.3% 36.5%
Logitboost 86.2% 33.3% 93.0%
RF 89.2% 6.7% 100.0%
Nnet 90.8% 40.0% 97.4%

Several data imbalances and resampling treatments are
available (Gao et al., 2021; Morris & Yang, 2021;
Mujalli et al., 2016; Zhou et al., 2016). In this
study, a total of two resampling techniques were
used. These include bootstrap and cross-validation.
Further, three class imbalance treatments were used,
Up, Down, and SMOTE. Table 5 and Table 6 present
the best resampling techniques with the three class
imbalance treatments. For each case, the best-
performing classifier is noted. It can be observed that
Bootstrap &Up and Cross-Validation &Up are the best
two resampled and class imbalance-treated classifiers
using the NB model. The sensitivity score associated
with Bootstrap & Up and Cross-validation & Up is
80%. For the same models, the overall accuracy was
42.3% (Bootstrap and Up) and 44.6% (Cross-validation
& Up). Therefore, these two classifiers are used to
infer the key features associated with parking-related
crashes.

Figure 8 presents the top 20 critical features for three
classifiers with high specificity, prediction accuracy,
and sensitivity scores. Overall, the feature ‘reversing’
appears to be the most critical feature. The observation
implies that parking-related crashes likely involve
either AV or conventional vehicles reversing from the
parking lot. 25 parking-related crashes involved either
AV or conventional vehicle reversing.

One of the typical narratives states that ‘…the Waymo
AV came to a stop behind a stalled bus blocking the
roadway. The driver transitioned the system to manual
mode and began to reverse out of the narrow road.
While reversing, a van approached from behind and the
Waymo AVmade contact with the front left fender of the
van…’. The narrative indicates that the AV involved in
the parking-related crash was in conventional mode and
reversing to bypass the stalled bus.

Further, the feature ‘parallel’ appears to be ranked the
highest by RF. This observation can imply that parallel
parking is also associated with a high likelihood of
parking-related crashes. The raw data indicates that 19
of the parking-related crashes parallel parking vehicles.
For instance, one of the narratives stated that ‘…while
maneuvering to avoid a parallel parking vehicle, the
driver of the Cruise AV made contact with another
vehicle that was pulling out of a driveway on the
opposite side of the street…’. This narrative shows that
AV was involved in a crash when it was performing
parallel parking. Another key observation among the
top 20 features is that ‘conventional mode’ is ranked
higher than ‘automated’. This feature’s high ranking
implies that AVs were likely to be involved in parking-
related crashes when manually operated. However,
the feature ‘automated’ in the top 20 most essential
features suggests that several crashes involved AVs
in autonomous mode. Other features such as front
passenger, mirror, front bumper, injury, etc. explain
more of what happens after a collision than what causes
a collision.

7 Conclusions

This study investigated factors associated with parking-
related crashes involving AVs. A total of 460 AVs
crashes collected by the CDMVwithin six years (2017–
2022) were analysed. Text network analysis was
applied to identify factors associated with parking- and
non-parking-related crashes in unstructured narrative
data. Using text network topology, keyword frequency,
co-occurrence, and collocations, features peculiar to
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Table 5 Performance metrics for text classifiers (with bootstrap resampling and imbalance treatments)

Bootstrap
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Bootstarp Bootstrap & Down
SVM 88.5% 0.0% 100.0% 68.5% 93.3% 65.2%
NB 40.8% 73.3% 36.5% 42.3% 66.7% 39.1%
Logitboost 87.7% 33.3% 94.8% 83.1% 80.0% 83.5%
RF 89.2% 6.7% 100.0% 83.1% 80.0% 83.5%
Nnet 90.0% 40.0% 96.5% 79.2% 60.0% 81.7%
Best model Nnet NB SVM&RF Logitboost & RF SVM Logitboost & RF

Bootstrap & Up Specificity
SVM 80.0% 0.0% 83.5% 83.8% 66.7% 86.1%
NB 40.8% 73.3% 37.4% 48.5% 73.3% 45.2%
Logitboost 86.9% 13.3% 98.3% 87.7% 53.3% 92.2%
RF 89.2% 6.7% 96.5% 87.7% 33.3% 94.8%
Nnet 90.8% 40.0% 93.9% 89.2% 46.7% 94.8%
Best model RF NB Logitboost Nnet NB RF & Nnet

Table 6 Performance metrics for text classifiers (with cross-validation and imbalance treatments)

Cross-validation
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Cross-validation Cross-validation & Down
SVM 88.5% 0.0% 100.0% 60.0% 93.3% 55.7%
NB 40.8% 73.3% 36.5% 46.2% 73.3% 42.6%
Logitboost 86.9% 13.3% 96.5% 73.8% 46.7% 77.4%
RF 89.2% 6.7% 100.0% 75.4% 73.3% 75.7%
Nnet 90.8% 40.0% 97.4% 79.2% 46.7% 83.5%
Best Model Nnet NB RF Nnet SVM Logitboost

Cross-validation & Up Cross-validation & SMOTE
SVM 78.5% 66.7% 80.0% 83.8% 66.7% 86.1%
NB 44.6% 80.0% 40.0% 51.5% 73.3% 48.7%
Logitboost 87.7% 80.0% 88.7% 92.3% 60.0% 96.5%
RF 90.0% 46.7% 95.7% 87.7% 33.3% 94.8%
Nnet 88.5% 46.7% 93.9% 88.5% 46.7% 93.9%
Best Model Nnet NB & Logitboost RF Logitboost NB Logitboost

parking- and non-parking-related crashes could be
identified. For example, AVs operated more in a
conventional mode in parking spaces than in non-
parking spaces. In addition, it was identified that AVs
are likely to collidewith non-motorized vehicles in non-
parking areas as compared to parking spaces. However,
rear-end collisions were found to be shared in both
parking and non-parking areas.

Furthermore, the study used five text classifiers—
SVM, NB, Logitboost, RF, and Nnet—to predict

parking-related crashes. Performance metrics like
accuracy, sensitivity, and specificity were used to
compare the classifiers. In addition, two resampling
techniques–bootstrap and cross-validation were
employed to account for data imbalances and
resampling treatments. Results from classifiers
indicated that parking-related crashes are likely to
involve either AV or conventional vehicles reversing
from the parking lot. In addition, parallel parking was
associated with a high likelihood of parking-related
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crashes.

Based on the study results, AV operators need to
improve AV operation during parking especially when
reversing in the parallel parking. The narratives
indicated that reverse was among the keywords
that appear more frequently and associated with
parking-related crashes. Furthermore, the additional
considerations should be given to the parking
procedures. The fact that most of AVs are in
conventional mode during parking shows that AVs are
not performing well in that aspect. This can be solved
by having dedicated sensor for parking maneuvers,
which will be calibrated using parking environment
to improve its accuracy and reduce parking-related
crashes.

8 Study limitations

This study has some limitations which need to be
addressed in future research. Firstly, while traditional
crash data are collected by the police, this study used
crash data reported by vehicle owners. That being the
case, the accuracy of the data is not guaranteed, thus,
future research might obtain police crash reports and
compare crash narratives. This study used data from
California, however, currently various states are testing
AVs and are collecting crash data. Future studies may
consider crash data from all states testing AVs. Lastly,
text classifications work better with large data. The
sample size of 460 crashes is relatively small, and the
results obtained need to be carefully interpreted. Future
studies can use large sample sizes for broader analysis.
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