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Abstract: There is increasing interest in designing infrastructure systems to promote the safe use of
forms of active transportation such as bicycling. Collision data, which are typically used in road safety
studies, may be incomplete and the use of such data is reactive as it requires collisions to have already
taken place. As such, alternative approaches for evaluating the safety effect of various infrastructure
attributes, such as the use of surrogate safety measures, specifically traffic conflicts, are becoming
popular. Most collisions between bicyclists and vehicles occur at intersections and, of these, collisions
between right turning vehicles and bicyclists form the majority. The main objective of this study was
to use cross-sectional regression models to investigate various intersection characteristics, including
geometry, signal phasing, and bicycle infrastructure, to determine which attributes are significantly
associated with right turning conflicts and how this may vary with different conflict severity levels.
An increase in right hook vehicle-bicycle conflicts was found to be associated with the presence of
a dedicated right turn lane on the left of a bicycle lane, having a downgrade on the approach to an
intersection, the absence of pavement markings, a decrease in the value of lateral offset, and an increase
in bicycle and right turning vehicle volume.

Keywords: bicyclists, cross-sectional regression models, intersection safety, right hook conflicts,
safety countermeasures, surrogate measures of safety

1 Introduction

Active transportation has been recognized to have
benefits to public health and safety, the environment,
and the economy (Government of Canada, 2022).
Cycling is a principal form of active transportation,
but bicyclists are among the most vulnerable of road
users as they do not have the protection offered
by a vehicle and its various safety features such as
seatbelts. Statistics Canada indicates that collisions

with a motor vehicle made up 73% of fatal bicycling
events between 2006 and 2017 (Statistics Canada,
2019). It is therefore not surprising that they are a key
part of the demographic being targeted by Toronto’s
Vision Zero plan which pledges to improve safety using
a data-driven approach (City of Toronto, 2022).

Road safety analysis typically uses collision data to
develop models to predict the number of collisions
at a location of interest based on various attributes
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such as signalization options, intersection geometry and
exposure. Lack of bicycle volume data is a possible
impediment to such studies; however, computer vision
technology allowed for the bicycle volumes to be
measured directly in this research. Another obstacle is
that collision data, which are typically obtained from
police records, may be incomplete due to unreported
collisions. Additionally, collisions between bicyclists
and vehicles are much less frequent than those between
vehicles, resulting in inadequate sample sizes for
meaningful analysis. Surrogate safety measures, such
as traffic conflicts, provide an alternative to collisions
as a measure of safety. Conflicts are non-collision
interactions between road users defined by a threshold
value of a specific surrogate safety measure. The use
of surrogate safety measures to develop models that
correlate to collisions is an area of increasing interest
and has shown promising results (Chen et al., 2017;
Lorion, 2014; Anarkooli et al., 2021).

Two surrogate safety measures that are commonly
used for evaluating safety at an intersection are
time to collision (TTC) and post-encroachment time
(PET) (Chen et al., 2017). TTC is the time until a
collision would occur between two or more road users
that approach each other in space and time to such an
extent that a collision is imminent if their movements
are not altered. PET is the time between one road user
leaving a conflict zone and another road user arriving at
the same conflict zone. In this study, a modified time
to collision (T2) surrogate safety measure was used to
identify conflicts. T2 is a continuous indicator that is
calculated once trajectories of two road users converge
on a conflict area. It is defined as the time for the
latter of the two to arrive at a conflict area. It is a
generalized and flexible temporal proximity measure,
for which PET and TTC are two unique cases. It
accounts for possible changes in speed and travel path
leading up to an interaction (Laureshyn et al., 2017b).
Computing TTC and T2 requires motion prediction,
for which there are diverse methods; for this research,
constant velocity was used for motion prediction. A
simplified illustration of the T2 concept is shown in
Figure 1.

Recent studies have used video analytics to identify
conflicts based on some threshold value of a surrogate
safety measure. In a case-control study (Zangenehpour
et al., 2016) to determine if bicycle tracks improve
bicycle safety at signalized intersections, video
analytics software was used to identify interactions
between bicyclists and turning vehicles. That

Figure 1 Simplified illustration of the T2

concept (Laureshyn et al., 2017a)

study detailed the method by which video analytics
software was able to identify different road users,
i.e., pedestrians, bicyclists, or vehicles, to develop
trajectories for these road users and to identify
trajectories for bicyclists and vehicles that intersect.
PET was the surrogate safety measure used in the
study and details of how video analytics was used to
determine this value were explained.

Studies have been done to analyze which factors,
such as bicycle infrastructure, exposure, environmental
factors, and other such variables, may influence bicycle
safety both on segments and at intersections. In a
recent study, it was found that most collisions occur
at intersections (Bassil et al., 2015). Right turning
vehicle movement was found to have a significant
effect on the number of bicyclists injured at an
intersection, more so than for any other direction of
traffic movement (Miranda-Moreno et al., 2011).

The results of previous studies were mixed with respect
to the safety effects of the bicycle facilities (Liu
& Marker, 2020). A suggested explanation for the
uncertainty related to the safety effects of bicycle
facilities is that it depends on the context into which
they are introduced (Phillips et al., 2011). For
example, it may take some time for drivers to adapt to
bicycle infrastructure so the effects of a bicycle facility
may be different 2 months after implementation in
comparison to 4 years after. Additionally, populations
of different countries may have more experience with
certain bicycle facilities than others and may respond
differently. A review of published literature that mainly
pertained to controlled before and after studies did
not find any conclusive evidence that bicycle lanes
and other such cycling infrastructure reduces cycling
injuries (Mulvaney et al., 2015). However, it should
be noted that most of the studies reviewed did not use
modern techniques that accounted for regression to the
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mean and controlled effectively for other non-treatment
effects. In addition, sample sizes could be too small,
as notes by Strauss et al. (2013) who did not find any
statistically significant results in relation to the effect
of bicycle infrastructure on bicyclist safety. A recent
study Milligan et al. (2022) looked at advancing design
practices to mitigate bicycle right-hook conflicts and
considered how intersection characteristics affect both
the speed of right turning vehicles and the conflicts
between right turning vehicles and bicyclists. This
study identified several factors that were associated
with conflict frequency such as the presence of a right
turning lane, the lateral offset of the bicycle facility as
measured between the extension of the outside edge of
the vehicle lane (for the right turning vehicle movement
analysed) to the edge of the travel path for cyclists
through the intersection, the total length of bicycle
exposure to right turning vehicles, starting at the vehicle
stop bar and ending at the furthest edge of the furthest
vehicle receiving lane, and the grade on approach to the
intersection.

2 Data overview

Signalized intersection approach characteristics and
conflict data from 10 different cities in 7 different
Canadian provinces and territories were provided by
Miovision, a company specializing in video conflict
analysis for road safety. Each city used their own
criteria when selecting the intersections to be analyzed.
Some of these criteria included having higher than
normal cyclist volume, the presence of new cycling
infrastructure, having a specific intersection design
such as protected corners, having high right turning
vehicle volume, and a history of past collisions.
Conflict data were collected during different months
of the year, between July and December. Bicycle
volume, and right turning vehicle volume were counted
in 15-minute intervals on a single day during the
week. The time over which the counts were done
mostly corresponded with the time over which the
conflict analysis was done. The conflict analysis period
varied from intersection to intersection; therefore, a
standard method of estimating the right turning vehicle
volume and bicycle volume had to be established. This
is explained in greater detail in section 3 Methods.
Intersections where conflict analysis and/or bicycle and
vehicle counts were not observed approximately during
the same times were removed from the database. The
database was also filtered by presence of signalization
for reasons explained further in section 3 Methods.

After filtering the data, 65 intersection approaches were
used to generate the final models provided in this study.
In a few cases, multiple approaches from a single
intersection were used. Various intersection approach
characteristics were needed to facilitate the statistical
analysis. These properties were mainly grouped as
follows:

• bicycle facility type
• signalization
• geometry
• traffic.

Facility type and geometry data were collected using
Google Maps1 in combination with drawings provided
by the cities and observations from the video files.
Information on the type of signalization present at the
different intersection legs was obtained from signal
timing plans provided by the cities or from observing
the traffic flow on video files obtained from the cameras
set up at the intersections. The volume of the right
turning vehicles and the volume of bicyclists crossing
the intersection leg in conflict with those right turning
vehicles were obtained using data from video files.

Miovision also provided information for each conflict
observed, including the modified time to collision (T2)
value and the speed of the vehicle in conflict with the
bicyclist. These values were used to filter the conflicts
into various severity levels.

Hyden (1987) noted that conflicts with TTC values
above approximately 3 seconds were difficult to detect
as they were part of the common interaction pattern at
the intersection. De Ceunynck (2017) reviewed various
publications relating to traffic conflicts and found that
threshold values of 1.5 s, 2 s and 3 s are the most
commonly used for TTC. These values were related
to conflicts between vehicles and are not specific to
conflicts involving a vehicle and bicyclist; however,
they were still used as a guide in this study. As a
result, a threshold value of 3 seconds for the modified
time to collision (T2) was used to identify a conflict.
These conflicts would later be filtered into different
severity levels. Based on this threshold value, the total
conflicts observed at each intersection were determined
using the video analytics software. The software used
was able to differentiate between bicyclists, pedestrians
and vehicles; however, the software does not provide

1https://maps.app.goo.gl/eiMSWexAidWi7SCY6
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Table 1 Descriptive statistics of the data

Parameter Frequency Mean Min Max St. Dev
Daily right hook conflicts n/a∗ 3.48 0 17.20 4.28
Right turning vehicle volume n/a 1036 88 6313 1068.4
Bicycle volume n/a 341 10 1771 419.6
Bicycle exposure length/m n/a 12.18 4.5 25 3.83
Advanced stop line/m n/a 2.21 0 10.1 2.96
Lateral offset/m n/a 1.12 0 5 1.42
Average right turn motor vehicle speed/(km/h) n/a 17.67 11 26 3.71
Downgrade on approach to the intersection 16 n/a n/a n/a n/a
Pavement markings present 35 n/a n/a n/a n/a
Constant or increasing lateral offset on approach 55 n/a n/a n/a n/a
Having a dedicated right turn lane 26 n/a n/a n/a n/a
Right turn on red permitted 58 n/a n/a n/a n/a

∗ n/a indicates ‘not applicable’

further classifications such as cars, buses, trucks etc.
Table 1 provides summary statistics of the data for the
65 intersection approaches used in the generation of the
models created in this study.

3 Methods

Conflict prediction models were developed using
the SAS software (SAS, 2019) to link independent
variables to different dependent variables by a log
function whereby the independent variables were
assumed to be linked to the transformed dependent
variable in a linear manner, resulting in a log-linear
relationship. A negative binomial error (NB) structure,
which is accepted as more appropriate for collision
data (which are correlated to conflicts) than one
based on the normal distribution, was assumed. The
NB distribution also has advantages over a Poisson
distribution that is sometimes considered in that it
allows for overdispersion that is common in collision
data (Gross et al., 2018). The number of conflicts
at a specific severity level was used as the dependent
variable in the models.

The models generated are all of the form shown in
Equation (1):

Conflicts = eβ0 ·BV β1 ·RTV V β2 · eβ3·var3+..., (1)

where Conflicts is the total number of conflicts at a
specific severity level observed during the 12-hour
analysis period (typically from 7:00 to 19:00);

βo is the estimate of the constant in the linearized
regression model;

β1, β2, β3, ... are coefficients estimated in the
regression analysis;

BV is the total estimated bicycle volume over the 12-
hour conflict analysis period;

RTVV is the total estimated right turning vehicle
volume over the 12-hour conflict analysis period;

var3, ... represent various independent variables for
final inclusion in the model, depending on the statistical
significance of their coefficients in the regression
analysis.

The conflict analysis period for most of the
intersections in the study was from 7:00–19:00,
with occasional severe weather and other factors
contributing to some variations in this analysis
timeframe at certain intersections. This 12-hour
timeframe was used to standardize the count data,
and the total right turning vehicle volume and bicycle
volume on a particular day were observed from 7:00–
19:00 at each intersection. These 12-hour counts were
used in the generation of the conflict prediction models.
Intersections in the database also had different conflict
analysis periods due to some being observed for more
days than others; for example, one intersection may
have had a conflict analysis period of 60 hours spread
across 4 days while other intersections may have had
a conflict analysis period of 50 hours spread across 3
days. To cater for this variation in analysis periods,
the number of days was used as an offset variable
in the regression model with the number of days
being calculated as the total analysis period divided
by 12 hours. As a result, models that predict conflict
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frequency over a 12 hour period were generated, with
this 12 hour period typically being 7:00–19:00.

The conflict severity levels were defined by
combinations of different ranges of the T2 variable and
the conflicting vehicle’s speed. Hyden (1987) found
that classifying conflict severity by both a temporal
measure (time-to-collision) and speed was more stable
than classifying conflict severity by a temporal measure
alone. The modified time to collision was chosen as
the temporal surrogate safety measure as it can cater
for both collision course and non-collision course
interactions. Using a 3 second threshold value, the
video analytics software was able to identify conflicts
from video files based on the procedure outlined below:

• Videos recordings were collected at intersections
using temporary or permanently deployed cameras.

• The video analytics software automatically detected
and classified road users in every frame of the
video using artificial intelligence/ computer vision
models.

• A tracking algorithm linked together the road user
detections in adjacent frames of the video to create
tracks.

• Spatial mapping through homography was
completed to map the location of a road user from
the image coordinate into the world coordinate at
the intersection. This required undistorting the
images and developing a relationship between pixel
coordinates and world coordinates.

• Trajectories for every road user were developed
in world coordinates and intersecting trajectories
were filtered based on the criteria used to define a
conflict.

Each conflict identified in the database is between
a cyclist and a right turning vehicle, based on their
intersecting trajectories as explained above. The
presence of other road users, such as pedestrians or
other bicyclists, and any effect they may have had on
the conflict was not considered in this study.

Figure 2 shows an image of the video analytics software
examining a video file, detecting road users, and
creating trajectories.

A conflicting motor vehicle speed of 15 km/h (in
combination with other values of the modified time
to collision metric) was chosen for this research as an
experimental threshold value to classify the conflicts

into different severity levels. This is based on
research in relation to the probability of a severe injury
(Maximum Abbreviated Injury Score of more than
3, MAIS3+) for a pedestrian (Jurewicz et al., 2016).
The probabilities developed for pedestrians (Jurewicz
et al., 2016) were applied to bicyclists in this study,
although there may be some differences between the
two types of vulnerable road users. The severity of
conflicts between vehicles and bicyclists was based
on different threshold values for the probability of a
MAIS3+ injury to pedestrians as shown in Table 2.
These threshold values, though logical, are still pending
validation through correlations to collisions, a task that
was outside the scope of this study. There were no
conflict speeds in the dataset corresponding to high
severity conflicts, therefore, the conflicts could only
be further classified as either medium or low conflicts
based on a 5% probability for a MAIS3+ injury. Based
on Figure 3 this corresponds to a conflict speed of
15 km/h.

Table 2 Probability MAIS3+ injury for conflict severity
categories

Severity Probability of
MAIS3+ injury

Speed threshold
for VRU

Low < 5% <15 km/h
Medium 5%–40% 15–35 km/h
High > 40% >35 km/h

The conflict severity levels for which models were
developed were classified as follows:

• Total conflicts
• Conflicts with conflict speed > 15 km/h
• Conflicts with conflict speed < 15 km/h
• Conflicts with T2 < 2 s and conflict speed > 15 km/h
• Conflicts with T2 < 2 s and conflict speed < 15 km/h
• Conflicts with 2 s < T2 < 2.5 s and conflict speed >
15 km/h

• Conflicts with 2 s < T2 < 2.5 s and conflict speed <
15 km/h

• Conflicts with 2.5 s < T2 < 3 s and conflict speed >
15 km/h

• Conflicts with 2.5 s < T2 < 3 s and conflict speed <
15 km/h.

Although the above thresholds have a basis in injury
biomechanics research, future additional validation of
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Figure 2 Image from the video analytics software (Microtraffic, 2021)

Figure 3 Proposed model of severe injury probability vs bullet vehicle impact speeds in different crash types, adapted
from (Jurewicz et al., 2016)
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conflict severity levels by linking them to collision
frequency over long periods would be beneficial.

It should be noted that the dependent variable for each
of the 9 models is different, and so the models are not
comparable in a statistical sense.

Before the final models were developed, the data
were filtered so that only those intersections with
permissive vehicle right turn signalization were
included in the regression analysis. This was done
because signalization was found to have a significant
influence on the number of conflicts at the intersection.
Analyzing intersections with permissive signalization
only ensured that the effects of signalization were the
same across all intersections.

Table 3 shows the parameters of a regression model of
the form shown in Equation (1), which was generated
from the database before it was filtered by signalization.
Most of the signal phasing strategies have a significant
effect on the frequency of conflicts between bicyclists
and right turning vehicles. Fully protected phasing
was seen to be associated with a reduction in the
frequency of conflicts, as would be expected. Although
different regression models were formulated using the
entire dataset, including signalization as an explanatory
variable did not provide much insight into what other
factors might also be contributing to the conflict
frequency as many of the parameters included in
the final models (from the filtered database) were
insignificant in the earlier models.

Table 3 Coefficient estimates for the total conflicts model
with phasing and LBI time (estimated on a dataset of 90
intersection approaches)

Parameter Coefficient p value
Intercept -9.3349 < 0.0001
Ln total right turn volume 0.8048 < 0.0001
Ln total bicycle volume 0.7939 < 0.0001
Leading bicycle interval
length∗

-0.2508 0.0057

Fully protected phasing -2.8242 < 0.0001
Leading bicycle
interval/permissive

1.0431 0.0613

Protected right turn/permissive -0.1713 0.7003
Permissive
Dispersion 0.2887

∗Leading bike interval (LBI) refers to the time allotted to bicyclists
to cross before motor vehicles are allowed to enter the intersection.

4 Results

Multiple models were estimated on the filtered dataset,
as described earlier, one for each conflict severity level
previously identified. The results of the regression
analysis are summarized in Table 4. ‘NA’ in Table 4
signifies that the parameter was not included in the
model since it was not found to be statistically
significant, while the dashes indicate that a variable
was not included in a model. The conflicts used for
the dependent variables are identified in a footnote to
the table. The formulation for these models is given in
Equation (1).

The following shows an example of model 1, generated
from the regression analysis for total conflicts over the
12-hour conflict analysis period:

Total Conflicts = e−11.0868 · BV 1.1532 ·
RTV V 0.6358 · e0.0484·BEL · e0.0481·ASL ·
e0.5798·LatOffset · e0.3547·DRTL · e−0.3038·Approach ·
e0.6126·NoPMP

(2)

where BV—bicycle volume;

RTVV—right turn vehicle volume;

BEL—bike exposure length;

ASL—advance stop length;

LatOffset—constant or increasing lateral offset;

DRTL—dedicated right turn lane;

Approach—flat or uphill approach to intersection;

NoPMP—no pavement markings present.

It is important to determine how models perform over
the range of values for different variables in the model.
A model may be accurate at predicting conflicts on
average but may still over predict or underpredict
over specific ranges of a variable. To determine
how the models perform over a range of values,
Cumulative Residual (CURE) plots are useful (Hauer
& Bamfo, 1997). CURE plots are created by plotting
the cumulative residuals arranged in ascending order
of the values of a particular variable. Hauer (2015)
has suggested that the most informative abscissa is the
estimate of the dependent variable from the model. The
95% confidence limits are plotted on the same axis
along with the cumulative residuals. If there is no bias
present in the model, the CURE plot would oscillate
consistently within the confidence limits. If the CURE
plot increases continuously over a specific range of
values, it indicates that the model underpredicts in
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that range. Alternatively, if the CURE plot decreases
continuously over a specific range of values, it indicates
that the model overpredicts in that range. If there is a
steep vertical change slope in the cure plot, this might
indicate the presence of an outlier in the data (Hauer,
2015). A prediction model can be considered to be
calibrated well over the entire range of the data if no
more than five percent of the CURE plot ordinates
exceed the 2σ limits (Lyon et al., 2016). These
limits represent the 95% confidence intervals for the n
residuals corresponding to the first n estimated values
of the total number of conflicts.

Figure 4 shows illustrative CURE plots for some of
the daily conflict prediction models generated. Based
on the suggestion by Hauer (2015) the cumulative
residuals were plotted in ascending order of the model
estimated conflicts. As can be seen from these plots,
the models are calibrated well to the data based on
the criteria stipulated in Lyon et al. (2016). A similar
observation could be made for the other models based
on CURE plots that are not shown here.

A quantitative analysis of the effects of changing
different variables was done for each conflict severity
level, i.e., for each model. To determine the effect
of a change to a categorical variable, the number of
conflicts predicted by a model equation corresponding
to a severity level was calculated for the baseline level
of that categorical variable. The values of the other
variables in the model equation were selected using
typical values for those variables present in the dataset.
After this was done, the number of conflicts predicted
by themodel equation corresponding to a given severity
level was calculated using the same values for the other
variables as before using, however, a different level
of the categorical variable. The percentage change
in the number of conflicts predicted, compared to the
number of conflicts predicted for the baseline level
of the categorical variable was then calculated and is
presented in Table 5.

This calculation (percentage change in estimated
conflicts) can be represented by Equation (3):

Percentage change = (eβ1 − 1) · 100 (3)

where β1—the estimate of the coefficient of the
categorical variable, at the level of that categorical
variable for which the change in categorical variable
from the baseline level is being analyzed.

The results of these effects for each conflict severity
level are presented in Table 5.

Equation (4) was used to calculate the effect of
increasing the right turning vehicle volume or the
bicycle volume by 10% as follows:

Percentage change = (1.1βv − 1) · 100 (4)

where βv—the estimate of the coefficient of the right
turning vehicle volume/bicycle volume.

The effect of increasing the other quantitative
independent variables such as bicycle exposure length,
advanced stop line length and lateral offset depends
on the original value of those variables. The effect of
a 10% increase in those values can be represented by
Equation (5):

Percentage change = (e0.1·βx·X − 1) · 100 (5)

where βx—the coefficient of the quantitative
independent variable;

X—the original value of the quantitative independent
variable.

The effects estimated from Equation (4) and
Equation (5) are illustrated in Table 6. Since the
original value of a variable influences the magnitude
of the effect that changing that variable would have
on the predicted conflicts (as shown in Equation (4)),
the average values for the variables were used for the
calculations. These average values are as follows:

• Average right turn speed—17.5 km/h
• Bicycle exposure length—12.7m
• Advanced stop line—2m
• Lateral offset—1m.

Based on the results summarized in Table 4, various
observations of potential interest can be made. As
is evident, an increase in right hook vehicle-bicycle
conflicts is generally associated with the presence of
a dedicated right turn lane on the left of a bicycle
lane, having a downgrade on the approach to an
intersection, having a constant or increasing lateral
offset on approach to an intersection, not having any
pavement markings, and increasing the right turning
vehicle volume and bicycle volume. An increase in
lateral offset is associated with a lower number of right
hook conflicts.

5 Discussion

When looking at total conflicts (Model 1), bicycle
exposure length, having a dedicated right turn lane,

8



Mansell et al. | Traffic Safety Research vol. 6 (2024) e000040
T
ab
le
4
C
oe
ff
ic
ie
nt
es
tim

at
es
fo
rc
on
fli
ct
pr
ed
ic
tio
n
m
od
el
s∗

(e
st
im
at
ed

on
a
fil
te
re
d
da
ta
se
to
f6
5
in
te
rs
ec
tio
n
ap
pr
oa
ch
es
)

Pa
ra
m
et
er

M
od
el
1

M
od
el
2

M
od
el
3∗

∗
M
od
el
4

M
od
el
5

M
od
el
6

M
od
el
7

M
od
el
8

M
od
el
9

Es
t.

p
Es
t.

p
Es
t.

p
Es
t.

p
Es
t.

p
Es
t.

p
Es
t.

p
Es
t.

p
Es
t.

p
In
te
rc
ep
t

-1
1.
09

.0
00

-1
3.
77

.0
00

-1
0.
01

.0
00

-1
3.
29

.0
00

-8
.4
0

.0
00

-1
4.
75

.0
00

-1
1.
64

.0
00

-1
5.
11

.0
00

-1
2.
92

.0
00

N
o
do
w
ng
ra
de

on
in
te
rs
ec
tio
n

ap
pr
oa
ch

-.3
0

.1
04

-.5
9

.0
37

-.3
1

.1
60

-1
.4
3

.0
00

-.9
0

.0
40

-
-

-
-

-
-

-
-

N
o
pa
ve
m
en
t

m
ar
ki
ng
s

.6
1

.0
01

.6
2

.0
30

.6
1

.0
14

.6
5

.1
17

-
-

0.
50

.0
92

-
-

.8
6

.0
23

.7
9

.0
05

C
on
st
an
to
r

in
cr
ea
si
ng

la
te
ra
l

of
fs
et
on

ap
pr
oa
ch

.5
8

.0
13

.9
8

.0
03

.3
4

.2
14

.9
5

.0
52

-
-

0.
93

.0
08

-
-

1.
01

.0
20

-
-

D
di
ca
te
d
rig

ht
tu
rn
la
ne

.3
5

.0
32

.7
9

.0
01

-
-

.7
6

.0
46

-
-

0.
54

.0
34

-
-

.9
0

.0
05

-
-

R
ig
ht
tu
rn
in
g

ve
hi
cl
e
vo
lu
m
e

.6
4

.0
00

.4
2

.0
04

.7
4

.0
00

.2
5

.2
49

∗
.4
5

.0
91

0.
41

.0
13

.7
2

.0
01

.4
0

.0
41

.8
5

.0
00

B
ic
yc
le
vo
lu
m
e

1.
15

.0
00

1.
37

.0
00

1.
03

.0
00

1.
31

.0
00

.7
5

.0
00

1.
31

.0
00

1.
05

.0
00

1.
41

.0
00

1.
23

.0
00

B
ic
yc
le
ex
po
su
re

le
ng
th

∗∗
∗

.0
5

.0
25

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

A
dv
an
ce
d
st
op

lin
e∗

∗∗
∗

.0
5

.1
06

.0
8

.0
68

-
-

-
-

-
-

-
-

-
-

-
-

-
-

La
te
ra
lo
ff
se
t

-
-

-.2
1

.0
35

-.9
6

.0
52

-.3
9

.0
36

-.5
8

.0
32

-
-

-.2
5

.0
78

-
-

.1
1

.1
71

La
te
ra
lo
ff
se
tx

Ln
(b
ic
yc
le
vo
lu
m
e)

-
-

-
-

.1
6

.0
70

-
-

-
-

-
-

-
-

-
-

-
-

A
ve
ra
ge

rig
ht
tu
rn

m
ot
or
ve
hi
cl
e

sp
ee
d

-
-

.1
4

.0
01

-
-

.1
5

.0
04

-
-

0.
15

.0
00

-
-

.1
4

.0
08

-
-

N
o
rig

ht
tu
rn
on

re
d

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-1
.2
3

.0
22

-
-

∗
Th

e
m
od
el
si
n
th
e
ta
bl
e
ar
e
fo
rt
he

co
nf
lic
tl
ev
el
sd

ef
in
ed

as
:1

.T
ot
al
co
nf
lic
ts
;2
.C

on
fli
ct
sw

ith
co
nf
lic
ts
pe
ed

>
15

km
/h
;3
.C

on
fli
ct
sw

ith
co
nf
lic
ts
pe
ed

<
15

km
/h
;4
.C

on
fli
ct
sw

ith
T 2

<
2
s

an
d
co
nf
lic
ts
pe
ed

>
15

km
/h
;5
.C

on
fli
ct
sw

ith
T 2

<
2
sa

nd
co
nf
lic
ts
pe
ed

<
15

km
/h
;6
.C

on
fli
ct
sw

ith
2
s<

T 2
<
2.
5
sa

nd
co
nf
lic
ts
pe
ed

>
15

km
/h
;7
.C

on
fli
ct
sw

ith
2
s<

T 2
<
2.
5
sa

nd
co
nf
lic
t

sp
ee
d
>
15

km
/h
;8
.C

on
fli
ct
sw

ith
2.
5
s<

T 2
<
3
sa
nd

co
nf
lic
ts
pe
ed

>
15

km
/h
;9
.C

on
fli
ct
sw

ith
2.
5
s<

T 2
<
3
sa
nd

co
nf
lic
ts
pe
ed

<
15

km
/h
.

∗∗
M
od
el
3
is
th
e
on
ly
m
od
el
w
he
re
th
e
bi
cy
cl
e
fa
ci
lit
y
ty
pe
sw

er
e
no
te
d
to
be

at
le
as
ta
ta

10
%

si
gn
ifi
ca
nc
e
le
ve
l.
Th

e
es
tim

at
es

an
d
p
va
lu
es

w
er
e
as

fo
llo
w
s:
B
i-d

ire
ct
io
na
lc
yc
le
pa
th
:-
0.
94

(.0
21
),
Pa
in
te
d
B
ik
e
La
ne
:-
0.
60

(.0
97
),
Pr
ot
ec
te
d
B
i-d

ire
ct
io
na
lb
ic
yc
le
la
ne
:-
0.
62

(.1
04
),
Pr
ot
ec
te
d
U
ni
-d
ire
ct
io
na
lb
ic
yc
le
la
ne

-0
.5
77
9
(.0
75
),
Sh
ar
ed
-u
se
pa
th
:B

as
el
in
e.

∗∗
∗
To

ta
ll
en
gt
h
of

cy
cl
is
te
xp
os
ur
e
to
rig

ht
tu
rn
in
g
ve
hi
cl
es
.T

he
m
ea
su
re
m
en
ts
ta
rts

at
th
e
ve
hi
cl
e
st
op

ba
r,
ex
ce
pt
fo
rm

ul
ti-
us
e
pa
th
sw

he
re
it
w
ou
ld
st
ar
ta
tt
he

gu
tte
rl
in
e
or

a
pr
ot
ec
te
d
bi
ke

la
ne

w
he
re
th
e
ba
rr
ie
re
xt
en
ds

pa
st
th
e
st
op

ba
r,
in
w
hi
ch

ca
se
th
e
m
ea
su
re
m
en
tw

ou
ld
st
ar
tw

he
re
th
e
ba
rr
ie
re
nd
s.
Th

e
m
ea
su
re
m
en
te
xt
en
ds

as
fa
ra
st
he

fu
rth

es
te
dg
e
of
th
e
fu
rth

es
tr
ec
ei
vi
ng

tra
ve
ll
an
e.

∗∗
∗∗
A
dv
an
ce
d
St
op

Li
ne
:L

on
gi
tu
di
na
ld
is
ta
nc
e
be
tw
ee
n
th
e
bi
cy
cl
e
la
ne

st
op

ba
ra
nd

ad
ja
ce
nt
ve
hi
cl
e
tra
ve
ll
an
e
st
op

ba
r.

9



Mansell et al. | Traffic Safety Research vol. 6 (2024) e000040

Figure 4 CURE plots for various conflict prediction models

Table 5 Summary of the quantitative analysis of the effect of changing different categorical variables in the model
equations∗

Parameter Average associated effect on conflicts∗∗

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
No downgrade
on intersection
approach

-26.2% -44.7% -26.6% -76.0% -59.4% NA NA NA NA

No pavement
markings

84.5% 86.9% 84.7% 92.3% NA 64.5% NA 137.0% 120.1%

Constant or
increasing
lateral offset
on approach

78.6% 167.2% 40.7% 158.4% NA 153.3% NA 173.3% NA

Dedicated
right turn
lane∗∗∗

42.6% 119.9% NA 113.7% NA 72.3% NA 145.6% NA

∗The models in the table are for the conflict levels defined as: 1. Total conflicts; 2. Conflicts with conflict speed > 15 km/h; 3. Conflicts
with conflict speed < 15 km/h; 4. Conflicts with T2 < 2 s and conflict speed > 15 km/h; 5. Conflicts with T2 < 2 s and conflict speed < 15
km/h; 6. Conflicts with 2 s < T2 < 2.5 s and conflict speed > 15 km/h; 7. Conflicts with 2 s < T2 < 2.5 s and conflict speed > 15 km/h; 8.
Conflicts with 2.5 s < T2 < 3 s and conflict speed > 15 km/h; 9. Conflicts with 2.5 s < T2 < 3 s and conflict speed < 15 km/h.
∗∗NA signifies that the parameter was not included in the model since it was not found to be statistically significant and as such no
associated effect could be calculated for that model.
∗∗∗Although the right turn lane was strongly associated with increased conflict frequency, manual review of the conflicts gives the
impression that there is a higher degree of control and awareness by involved parties and the authors are not implying that it is unsafe
to have a right turn lane adjacent to a bicycle lane.
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Table 6 Summary of the quantitative analysis of the effect of changing different quantitative variables in the model
equations∗

Parameter Average associated effect on conflicts∗∗

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9
Bicycle exposure 6.3% NA NA NA NA NA NA NA NA
Advanced stop
line

1% 1.6% NA NA NA NA NA NA NA

Lateral offset NA -2.1% -9.2% -3.8% -5.6% NA -2.5% NA 1.1%
Lateral
offset x Ln
(bicycle volume)

NA NA 1.6% NA NA NA NA NA NA

Average right
turn motor
vehicle speed

NA 28.4% NA 29.3% NA 30.5% AN 28.6% NA

10% increase in
right turn vehicle
volume

6.2% 4.1% 7.3% 2.4% 4.4% 3.9% 7.1% 3.9% 8.4%

10% increase in
bicycle volume

11.6% 13.9% 10.3% 13.3% 7.4% 13.3% 10.5% 14.4% 12.4%

* The models in the table are for the conflict levels defined as: 1. Total conflicts; 2. Conflicts with conflict speed > 15 km/h; 3. Conflicts
with conflict speed < 15 km/h; 4. Conflicts with T2 < 2 s and conflict speed > 15 km/h; 5. Conflicts with T2 < 2 s and conflict speed < 15
km/h; 6. Conflicts with 2 s < T2 < 2.5 s and conflict speed > 15 km/h; 7. Conflicts with 2 s < T2 < 2.5 s and conflict speed > 15 km/h; 8.
Conflicts with 2.5 s < T2 < 3 s and conflict speed > 15 km/h; 9. Conflicts with 2.5 s < T2 < 3 s and conflict speed < 15 km/h.
** NA signifies that the parameter was not included in the model since it was not found to be statistically significant and as such no
associated effect could be calculated for that model.

and increasing the right turning vehicle volume or the
bicycle volume were all noted to be associated with an
increase in the right turning conflicts observed and in
general the effects were found to be significant at a
level of 5%. Having a flat or uphill approach grade to
the intersection, in comparison to having a downward
approach grade, was associated with a decrease in the
number of conflicts that was significant at a 10% level.
Some factors, such as having an advanced stop line for
vehicles adjacent to a bicycle lane, were not found to be
significant at a 5% level; however, their significance
level was such that it can be reasonably assumed that
they have an influence on the number of total conflicts
observed.

When looking at various attributes and their effects
at different conflict severity levels (as categorised by
various ranges of T2 and right turning vehicle speed)
the following observations can be made:

1. Average right turn speed was found to have a
significant association with conflicts where the
vehicle speed is greater than 15 km/h as indicated
in Table 6 for models 2, 4, 6 and 8; however, it is
not significant in less severe conflicts represented in

models 3, 5, 7 and 9, which seems intuitive.
2. Larger lateral offsets are associated with a decrease

in observed conflicts as indicated in Table 6 by
models 2, 3, 4, 5 and 7. Results for how this effect
changes with conflict severity levels are mixed,
but it generally appears as though larger lateral
offsets at slower speeds are associated with a greater
reduction in conflicts. One possible explanation
is that a larger lateral offset allows a right turning
vehicle more reaction time as the distance between
the bicyclist’s path through the intersection and the
right turning vehicle’s path is larger. Additionally,
the larger lateral offset may improve the driver’s
ability to perceive cyclists due to the change in the
driver’s line of sight while turning, in relation to the
bicyclist’s path through the intersection.

3. Not having a downgrade on approach to an
intersection is associated with larger decreases
in conflict frequency at higher severity levels
classified by lower T2 values or higher right turning
conflicting vehicle speed as indicated in Table 5 by
comparing models 2 and 4 with models 3 and 5,
respectively, and also by comparing models 2 and
4. This may be because the ability of bicyclists to
slow down or stop is hindered by downhill grades,
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potentially resulting in more severe conflicts.
4. The presence of a dedicated right turn lane, which

the data suggest is associated with an increase in
observed conflicts, has an effect that is significant at
higher severity levels where the conflicting vehicle
speed is greater than 15 km/h as indicated in Table 4
and Table 5 by models 2, 4, 6 and 8 compared to
models 3, 5, 7 and 9, respectively.

Observations 1 and 2 were made across most of the
different levels of conflict severity categories; however,
observation 2 is seen to be reversed in the 2.5 s < T2 < 3
s category, with an increase in lateral offset associated
with an increase in conflict frequency. This apparent
anomaly needs to be further explored.

6 Conclusions limitations, and future
directions

Through regression analysis, various associations were
observed in the data. In general, increased bicycle
exposure length, and increased right turning vehicle
volume or bicycle volume, were all noted to be
associated with an increase in the right turning conflicts
observed. An increase in lateral offset of the bicycle
facility and a flat or uphill approach grade to the
intersection, were associated with a reduction in the
number of conflicts observed. Previous research
supports some of these observations. Although the
very small increase in right turning conflicts associated
with advanced stop lines seems counterintuitive, one
study (Buch & Jensen, 2017) found that there was
an increase in all types of right-turn collisions when
a staggered stop line was used, a result that was,
however, not statistically significant. In the same
study, it was found that there was no safety effect
at intersection arms where there was a dedicated
right turn lane. One study found that failures in a
driver’s visual attention were common when turning
at urban intersections, primarily when checking for
bicyclists rather than checking for pedestrians (Kaya,
2019). This supports the suggested explanation for why
increased lateral offset is associated with a decrease in
conflict frequency, as it deals with the driver’s visual
perception. The effects associated with increasing
bike exposure length and right turning vehicle volume
or bicycle volume are intuitive as they all increase
the opportunity for conflicts to occur. A study on
advancing design practices to mitigate bicycle right
hook conflicts also supports the observations made in
this study in relation to factors affecting total conflict

frequency (Milligan et al., 2022). These observations
can be used to guide and improve the geometric design
of intersections with the aim of improving bicycle
safety.

Some of the limitations of this study are related
to both the data set and the regression analysis.
The intersections in the database used to generate
conflict prediction models all had some form of
bicycle infrastructure present and, therefore, it was
not possible to compare the effect of having a
bicycle facility present to not having a bicycle facility
present. This necessitated a cross-sectional study,
which is not ideal since there may be omitted or
correlated variables in the models which could lead
to inaccurate coefficients or even counterintuitive
results. Nevertheless, corroboration of the findings
with intuition and the results for other studies suggest
that there is value to the cross-sectional approach used.

The data related to the video derived conflicts
represents observations that were made at various times
of the year. The conflicts observed at the intersections
were not all observed at the same time of year, i.e., some
of the intersections were observed in July and some
were observed in December. The observation period
was generally between July to December; however,
since these observations were also done in different
provinces, the weather conditions under which these
observations were made might have been different.
This was not considered in the regression models
developed and could be a source of unaccounted
heterogeneity that is, nonetheless, typical of such
studies.

The intersections were also from various provinces
and cities. As such, the regression models represent
the average effects over the various categories of
intersection in different cities since any behavioral
differences between drivers at different types of
intersections or in different cities could not be
accounted for. Future research can address this
limitation by using intersections from a specific city or
province to reduce differences in driving and cycling
behavior due to different practices or norms in different
areas. Alternatively, approaches that incorporate
behavioral variables into the prediction mechanism
such as those described by Shaon et al. (2019) can be
utilized.

Future research can investigate whether there is a
change in the effect of bicycle volume on the frequency
of conflicts as bicycle volume increases, as well
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as on whether the effectiveness of different bicycle
infrastructure changes as the bicycle volume changes.
In addition, it would be useful for such research to also
validate the severity level thresholds used to determine
what the best threshold values are for correlating
conflicts to collisions.

Finally, although zero inflated models were not used
in this study because of the focus on understanding
the causes of conflicts rather than improving statistical
fit for prediction purposes, measures can be taken
to address the root causes of possible excess zeros
such as selecting appropriate spatial and time scales
or adding a term to the model to capture unobserved
heterogeneity (Lord et al., 2005).
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