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Abstract: The provision of leading pedestrian intervals (LPI) has emerged in recent years 

to achieve safety equitability for pedestrians at signalized intersections. LPI is a way to 

provide the pedestrian walk interval a few seconds before starting the circular green 

indication to adjacent parallel traffic. Although the safety benefit of LPI is indisputable, 

there are fundamental questions that need to be addressed for the optimal deployment of 

this strategy. First, can significant safety benefits for pedestrians be achieved while 

maintaining a satisfactory operational level of service for vehicles? Second, what are the 

application circumstances most conducive to achieving the greatest safety benefits for 

pedestrians? Third, how can a jurisdiction effectively assess contemplated treatments to 

achieve optimal deployment? This exploratory paper addresses these three fundamental 

questions by reviewing relevant literature before presenting the research from the 

application of microsimulation to fifteen Toronto intersections where LPIs have been 

implemented. The microsimulation involved using a recently released module for 

accommodating LPI phasing in the PTV Vistro software. To directly address the first and 

second questions, vehicle-to-pedestrian conflicts and vehicle delay were estimated for ten 

scenarios that allowed for the provision of, and variability in the LPI interval, right turn 

volumes, right turn on red provision, pedestrian and vehicle volumes, and crossing width. 

The results suggest that significant safety benefits can be achieved for pedestrians while 

maintaining a satisfactory level of service for vehicles. They further suggest that potential 

LPI deployments need to be assessed on a case-by-case basis since the effects of LPI can 

be significantly impacted by the influencing factors investigated. Statistical models were 

developed to quantify the effects of LPI implementation on vehicle-to-pedestrian conflicts 

after controlling for pedestrian and turning vehicle volumes. The results of this exploratory 

investigation, though interesting and consistent with the literature and logical 

considerations, may not be generalizable in a strict sense. Nevertheless, the study does 

provide a blueprint for investigating the design, traffic, and operational factors that can 

influence the impact of LPI on pedestrian safety without detrimentally impacting vehicle 

level of service. 
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1 Introduction 

The National Highway Traffic Safety Administration (NHTSA), in 2019, disclosed that pedes-

trian fatalities have increased steadily since 2009 in the U.S. (NHTSA 2019). Therefore, it 

seems natural that pedestrian countermeasures feature prominently in Vision Zero programs in 

many cities in North America, and around the world for that matter. These countermeasures 

generally target the complex interactions between pedestrians and vehicles at signalized inter-

sections. Leading Pedestrian Interval (LPI) is one such countermeasure. It has been proposed 

as a cost-efficient solution by providing a temporal separation between pedestrians and turning 

vehicles. 

The LPI treatment provides the pedestrian walk interval a few seconds before the parallel ve-

hicular green indication to adjacent traffic. Based on logical considerations and evidence from 

real-world studies, the safety benefit of LPI is undisputed. However, there are fundamental 

questions that need to be addressed to foster the optimal deployment of this strategy. First, can 

significant safety benefits for pedestrians be achieved while maintaining a satisfactory opera-

tional level of service for vehicles? Second, what are the LPI application circumstances most 

conducive to achieving the greatest safety benefits for pedestrians? Third, how can a jurisdic-

tion effectively assess contemplated LPI treatments to achieve optimal deployment? 

The paper addresses these three fundamental questions by reviewing relevant literature before 

presenting the research from the application of microsimulation to fifteen Toronto intersections 

where LPIs have been implemented. Microsimulation was selected as the method for this in-

vestigation over crash-based or video derived data analysis since (a) a prohibitively large data-

base would be required to assess the application circumstances most conducive to achieving the 

greatest safety benefits, a problem that is exacerbated by the paucity of pedestrian crashes and 

high cost of video-derived data, and (b) microsimulation is most appropriate for evaluating 

safety and operational measures for scenarios that may be contemplated, but do not exist, as 

well as the effects of varying site characteristics such the length of the leading pedestrian inter-

val and pedestrian and vehicle volumes. 

The microsimulation involved the use of a recently released module for accommodating LPI 

phasing in the PTV Vistro software (Lynch n/d). The PTV Vistro implementation of LPI re-

quires no additional signal phases to model exact LPI operations for the traffic controller, 

thereby facilitating LPI application in the software. The paper is organized as follows. In the 

next section, we review the literature related to the safety and operational effects of LPIs. The 

objectives and overview of the study are then presented. The fourth and fifth sections present 

the methodology and data used, followed by sections that analyze and discuss the results. A 

summary of the findings is presented in the final section, along with recommendations for future 

research. 

2 Literature review 

A Leading Pedestrian Interval (LPI) minimizes the conflicts between pedestrians and vehicles 

at signalized intersections by providing pedestrians with crossing time in advance. To do so, 

signal timing should be adjusted to allow pedestrians to cross a few seconds before starting the 

green time for vehicles (Saneinejad & Lo 2015). Although this operation is considered a cost-

effective strategy for improving pedestrian safety, there can be a marked contrast between the 

safety effects from one location to another (Goughnour et al. 2021; Fayish & Gross 2010). 

Fayish & Gross (2010) quantified the safety effects of LPI for ten signalized intersections in 

State College, Pennsylvania, using a 4 year before period and a 3 year after period. A reduction 

of 58.7% was estimated for pedestrian-vehicle crashes, with a 95% confidence interval between 
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46.2% and 71.3%. Pedestrian-vehicle crashes increased at the comparison sites during the same 

period. Although traffic and pedestrian volumes varied significantly from site to site and over 

the course of the day, all of the intersections had the same LPI interval of 3 seconds at all times. 

In addition to the safety evaluation, an economic analysis compared the mean comprehensive 

cost of pedestrian-vehicle crashes with the cost of implementing the LPI and determined that 

LPI was highly cost-effective. However, the likely increases in vehicle delay were not consid-

ered. 

Another crash-based study was conducted by Goughnour et al. (2021), who used data from 56 

treated intersections in Chicago, 42 treated sites in New York City, and 7 treated sites in Char-

lotte, North Carolina to evaluate the safety effect of LPI. The crash modification factor (CMF) 

for pedestrian-vehicle crashes for all cities combined was 0.87 (a reduction of 13%), which was 

significant at a 95-percent confidence level. Interestingly, New York City entirely prohibited 

right turn on reds (RTORs) at treated sites, while Chicago allowed this movement in most cases. 

Other studies evaluated LPI based on traffic conflicts as crash surrogates. These included Hub-

bard et al. (2008), who evaluated the safety impacts of LPI using traffic conflict data derived 

from the recorded video at suburban intersections. For this, pedestrians were categorized as 

compromised or non-conflicting. A compromised pedestrian was defined as a situation in which 

the pedestrian is delayed because of a turning vehicle or changes their travel path or speed, 

while non-conflicting pedestrians can cross without any interruption from turning vehicles. 

Their results suggest that LPI could not improve pedestrian safety in the suburban environment 

without prohibiting right turn on red (RTOR). They observed that pedestrian crossings conflict-

ing with right-turn vehicles during the walk interval increased after implementing LPI. Moreo-

ver, they found, perhaps logically, that the right-turn volume is a key indicator of the effect of 

LPI, so much so that restricting RTOR with LPI implementation was proposed to improve the 

safety efficiency of LPI. 

In another study based on video-derived traffic conflict data, Guo et al. (2020) evaluated the 

safety effect of LPI using a hierarchical Bayesian peak over threshold (POT). The results indi-

cated a reduction of between 18.1% and 20.9% in severe vehicle-to-pedestrian conflicts based 

on post encroachment time (PET). They suggested considering the influence of factors such as 

road condition, pedestrian volume, left-turn traffic volume, and different values of LPI intervals 

for future research since they could not incorporate these factors in their model. Interestingly, 

severe vehicle-to-pedestrian conflicts were proposed as a more realistic indicator of safety ef-

fects, an approach that is becoming increasingly popular (Cavadas et al. 2020; Zheng & Sayed 

2019; Zheng et al. 2014). 

Operational effects, such as increased vehicle queues and delays because of lost green time to 

accommodate the LPI, are to be expected logically. Among the more prominent studies consid-

ering operational impacts of LPI is one by Saneinejad & Lo (2015), who proposed a suitability 

assessment checklist for LPI in the City of Toronto that considers the impact of this treatment 

on vehicular delay and level of service. They indicated that LPI has a negative effect on capacity 

and delay at intersections with high turning volumes. For one such intersection, for example, 

the total intersection delay increased by 20% in morning peak hour and 26% in afternoon peak 

hour. Moreover, the through phase volume to capacity (V/C) ratio of the intersection with LPI 

implemented reached 0.94 and 0.75, respectively, for the morning and afternoon peak periods. 

Few studies have considered safety and operational benefits of LPI in combination. Most cited 

of these is one by Sharma et al. (2017), who considered the costs (delay) and benefits (safety) 

of LPI using quantitative metrics to examine the success of implementing an LPI at specific 

signalized intersections. They offered a guideline on whether or not to use an LPI at an inter-

section based on turning movement volumes, the number of crashes, and geometry. Calculating 
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crash numbers for each scenario was complicated in that it considered the actual traffic condi-

tion and a probabilistic function. To predict the crash reduction based on each scenario, they 

used right-turning and pedestrian volumes and calculated the probability of the simultaneous 

presence of at least one vehicle and a pedestrian during the same right of way at the onset of 

green. Then, by comparing pedestrian crash reduction cost and additional vehicle delay cost, a 

determination could be made on whether the treatment is cost-beneficial or not. 

In sum, the literature review confirmed the need for a study such as the current one in that it 

indicated that there is precious little consistent information on the influence of site features and 

LPI implementation circumstances on both the safety and operational effects of LPIs. In ad-

dressing that need, we investigate whether significant safety benefits for pedestrians can be 

achieved while maintaining a satisfactory operational level of service for vehicles. In so doing, 

we provide a blueprint on how a jurisdiction can effectively assess contemplated treatments to 

achieve optimal deployment. 

3 Study objectives and overview 

This study is an exploratory one that aimed to address the need for more information on the 

influence of site features and LPI implementation circumstances on both safety and operational 

effects of LPIs. At the same time, the intent was to provide a blueprint for jurisdictions to un-

dertake such assessments in optimizing the deployment of contemplated LPI installations. Mi-

crosimulation was selected as the tool for this investigation since it is most appropriate for 

evaluating safety and operational measures for multiple scenarios that may be contemplated, 

but do not exist. It is especially where there is very limited availability of crash data and crash 

modification factors, as is the case for pedestrian measures. Microsimulation was used to esti-

mate delay, and vehicle-to-pedestrian conflicts for two scenarios at fifteen Toronto intersections 

– one with LPI implemented and one before LPI implementation. For one of these intersections, 

a similar evaluation was done for eight more hypothetical scenarios that were defined based on 

indications from previous studies to examine the potential influence of factors such as turning 

volumes, crossing width, length of the LPI interval, pedestrian volumes, and whether or not 

right turn on red (RTOR) is allowed. Detailed descriptions of each scenario are presented later 

in the paper (Table 4). 

4 Methodology 

The methodological framework is presented in Figure 1. The vehicular delay incurred due to 

an LPI implementation was measured by creating a layout in PTV Vistro containing all relevant 

parameters, including vehicles, pedestrians, and signal timing. Using this software, the Level 

of Service (LOS), vehicle delay, and maximum queue length can be calculated for each sce-

nario. Level of Service (LOS) indicates the quality of traffic operations at an intersection, rang-

ing from LOS A to LOS F, with LOS A indicating little or no traffic delays and LOS F indicat-

ing poor operation with very long delays. As noted earlier, the PTV Vistro implementation of 

LPIs requires no additional signal phases to model exact LPI operations for the traffic control-

ler, thereby facilitating LPI application in the software. In Vistro, LPI can be mimicked by 

utilizing the ‘Delayed Vehicle Green’ parameter. Then, in order to measure the number of con-

flicts, PTV VISSIM was first used to develop a simulation of pedestrians and vehicles for each 

scenario using the intersection file developed on PTV Vistro. Second, the Surrogate Safety As-

sessment Model (SSAM) (FHWA 2008; Pu & Joshi 2008) was applied to automatically iden-

tify, classify, and evaluate pedestrian-vehicle conflicts from the VISSIM trajectory output. It is 

worth mentioning that it was not possible to calibrate VISSIM for this study since there was no 

ground truth data. Earlier research (Saleem et al. 2014) based on Toronto signalized intersection 
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data found that using VISSIM with pre-calibrated default model parameter values to estimate 

conflicts, gave comparable results in relating conflicts to crashes generated with parameter val-

ues endogenously estimated. After identifying the number of severe vehicle-to-pedestrian con-

flicts, a deep learning method called autoencoder neural network was used to label the subset 

of extremely severe vehicle-to-pedestrian conflicts (anomalies) (Olive & Basora 2020; Tejada 

et al. 2020; Fernández et al. 2019; Olive & Basora 2019; Olive & Grignard 2018) based on the 

conflicts reported from SSAM. 

 

Figure 1 Methodological framework 

Each simulation run lasted for one hour in PTV VISSIM, and ten simulation runs were done 

for each scenario. SSAM identified simulated conflicts based on threshold values of two surro-

gate safety measures illustrated in Figure 2: the maximum time to collision (TTC), and the 

maximum post encroachment time (PET). As originally defined by Hayward (1972), TTC is 

‘…the time that remains until a collision between two vehicles would have occurred if the col-

lision course and speed difference are maintained’. PET measures situations in which two road 

users are not on a collision course and, as defined by Allen et al. (1978), is the time between 

the moment that the first road user passes a certain point, and the moment that the second road 

user reaches that point. Lower (or higher) TTC or PET values represent a shorter (or longer) 

time to collide and a higher (or lower) probability of more severe collisions. 

To identify conflicts, a TTC threshold of 2s is usually used, but a TTC between 1.6 and 2 is 

considered to have a low collision risk (Sayed & Zein 1999). Therefore, it was decided to use 

a maximum TTC threshold of 1.5 seconds and a maximum PET threshold of 1.5 seconds to 

capture those severe conflicts that are more likely to be surrogates for crashes (Milosavljevic 

2018; Tageldin & Sayed 2016). 

Conflicts so obtained, using TTC and PET thresholds of 1.5 seconds, are referred to hereafter 

as ‘severe’ conflicts to distinguish them from the subset of ‘extremely severe’ conflicts obtained 

with the autoencoder model. The average over the ten runs of the number of vehicle-to-pedes-

trian conflicts was used. 

The final part of the analysis was the development of statistical models to quantify the effects 

of LPI implementation on pedestrian-vehicle conflicts after controlling for pedestrian and turn-

ing vehicle volumes. Two sets of conflicts were modelled – the ‘severe’ ones identified from 

the SSAM software with maximum TTC threshold of 1.5 seconds and maximum PET threshold 

of 1.5 seconds, and the subset of ‘extremely severe’ ones identified using the autoencoder tech-

nique. 
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Figure 2 TTC (left), adopted from (Hayward 1972), and PET (right), adapted from (Allen et al. 1978) 

The use of extremely severe conflicts not only overcomes the low sample size issue for pedes-

trian crashes, but it also logically provides a more realistic surrogate for crashes compared to 

the universe of severe vehicle-to-pedestrian conflicts based on some arbitrary threshold (Guo 

et al. 2020). Of late, one of the most common tools used for estimating extremely severe con-

flicts is autoencoders (Olive & Basora 2020; Tejada et al. 2020; Fernández et al. 2019; Olive 

& Basora 2019; Olive & Grignard 2018). A single-layer autoencoder neural network anomaly 

detection algorithm is illustrated in Figure 3. Encoding and decoding work in the latent space 

and minimize the mean reconstruction loss during the training process. Due to the relatively 

low frequency of anomalies (i.e., extreme conflicts) in the training samples, the autoencoder 

does not prioritize their reconstruction while training. Thus, it can easily determine if a recon-

struction error exceeds the anomaly decision threshold by comparing the original indicators 

(e.g. input) with the reconstructed ones (e.g. output) (Fernández et al. 2019). 

These key advantages of this algorithm include learning the inherent data characteristics that 

distinguish safe events from anomalous or unsafe events without requiring labelled data, and 

the ability to work with multidimensional data (Tejada et al. 2020). Thus, it seems natural that 

autoencoders provide an ideal technique for detecting extremely severe vehicle-to-pedestrian 

conflicts. 

The basic principle of an autoencoder can be seen by considering a training data set 

{𝑥1, 𝑥2, … , 𝑥𝑁} where N is the size of the training data and 𝑥 ∈  ℝ𝑑. An autoencoder training 

problem is then solved by optimizing: 

𝑚𝑖𝑛 ∑ ‖𝑥𝑖 − �̂�𝑖‖2𝑁
𝑖=1                            

(1) 

where �̂�𝑖 represents a reconstructed interaction corresponding to 𝑥𝑖 as an input or original in-

teraction. 

In the application in this study, the conflict classification process included (a) randomly split 

test and train subsets, 20% and 80%, respectively (b) running an autoencoder neural network 

utilizing TTC and PET indicators, (c) labelling each conflict with a unique anomaly score, and 

(d) classifying extremely severe conflicts by testing different anomaly score thresholds. Figure 

4 plots the autoencoder reconstruction error distribution for 15 intersections in the city of To-

ronto. This histogram provides a continuous reconstruction error distribution for each data sam-

ple that helps identify the anomaly decision threshold. A sharp decrease in the distribution sug-

gests that the anomaly decision threshold should be close to that value. The conflicts that exceed 

the threshold are labeled as extremely severe ones. In Figure 4, the blue line represents the 

anomaly score, and the red rectangle suggests the potential threshold area. 
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Figure 3 Anomaly detection using autoencoder neural network, adapted from (Fernández et al. 2019) 

 

 

 

Figure 4 Histogram of outlier scores obtained from autoencoder algorithm 
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5 Data description 

It was decided to conduct the exploration at City of Toronto intersections with a range of pe-

destrian volumes, where LPI has been integrated into the signal timing. Fifteen such intersec-

tions were selected for the analysis. Figure 5 shows the selected intersections, as well as Google 

map images for a sample of 4 intersections. 15-minute traffic volumes at intersections were 

extracted from the Toronto Transportation Services Division open-source data portal; this al-

lowed for the peak hour to be identified and the traffic volumes to be estimated for the simula-

tions. Table 1 summarizes the vehicle and pedestrian volume data for the analyzed intersections. 

The traffic data included different vehicle types, including passenger cars, trucks, and buses. 

 

Figure 5 Study area 

The LPI duration for all intersections was set by the City of Toronto as 5 seconds. However, 

for this research, one scenario was defined to evaluate the safety and operational changes for a 

different LPI duration of 3 seconds that has been used in other jurisdictions.  All intersections 

had ‘permissive-only’ left-turn phasing. For all but two of the intersections, right turn on red 

(RTOR) is permitted. 

6 Analysis, results, and discussion 

6.1 Combined results for vehicle-to-pedestrian conflicts and vehicle delay 

Table 2 shows vehicle delay and Level of Service (LOS), along with severe vehicle-to-pedes-

trian conflicts, as well as the subset of extremely severe ones for the fifteen intersections ana-

lyzed without LPI implementation and with full LPI implementation (for all 4 Directions). Cy-

cle length was assumed to remain the same with or without LPI implementation. Vehicle Level 

of Service is reported based on the estimated delay for each scenario. The % changes (reduc-

tions) in conflicts and % changes (increases) in vehicle delay after full LPI implementation are 

shown in parentheses in columns 6 to 8. As seen in Table 2, vehicle delay increased after LPI 

was implemented, while the number of vehicle-to-pedestrian conflicts generally decreased. Of 
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special note is the fact that, despite the tangible increase in delay, the Level of Service post-LPI 

is still at an acceptable level for 12 of the 15 intersections (i.e. ‘C’ or ‘D’). However, there is 

substantial variation in the effects for the number of vehicle-to-pedestrian conflicts, suggesting 

that influencing factors may be at play. To illustrate, at the Church and Dundas intersection, a 

modest safety improvement was experienced after implementing LPI, with about a 32% reduc-

tion for severe conflicts and a 6% reduction for extremely severe conflicts. On the other hand, 

at the Church and Gerrard intersection, pedestrian safety improved substantially after imple-

menting LPI, with reductions of 67% and 50% in severe and extremely severe conflicts, respec-

tively. 

Table 1 Summary data on peak hour volumes (veh/h) for the selected intersections 

  Northbound Southbound  Eastbound Westbound 

Through traffic volume 

Minimum 172 138 18 15 

Average 453 509 271 341 

Maximum 692 1 075 599 618 

Left-turn volume 

Minimum 0 1 36 3 

Average 36 60 56 46 

Maximum 83 109 105 150 

Right-turn volume 

Minimum 29 37 29 20 

Average 69 78 48 64 

Maximum 126 138 76 107 

Outbound pedestrian volume 

crossing major street 

Minimum 23 21 23 17 

Average 124 141 119 144 

Maximum 228 516 268 389 

Inbound pedestrian volume  

crossing major street 

Minimum 23 17 23 21 

Average 119 144 124 141 

Maximum 268 389 228 516 

Outbound pedestrian volume 

crossing minor street 

Minimum 28 24 25 26 

Average 106 120 120 105 

Maximum 259 225 231 207 

Inbound pedestrian volume 

crossing minor street 

Minimum 26 25 24 28 

Average 105 120 120 106 

Maximum 207 231 225 259 

6.2 Estimation of statistical models for vehicle-to-pedestrian conflicts 

The objective here was to use the estimated severe and extremely severe vehicle-to-pedestrian 

conflicts to quantify the effects of LPI implementation after controlling for pedestrian and turn-

ing vehicle volumes. Generalized linear models with a negative binomial error structure and a 

form similar to that used for crash frequency models were estimated using SAS Enterprise 

Guide 7.1 (Meyers et al. 2009). 
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Table 2 Delay and vehicle-to-pedestrian conflicts with and without LPI at 15 intersections 

Four models were developed, as described below, with Models 1 to 3 based on severe conflicts 

and Model 4 on extremely severe conflicts. 

Model 1 (equation (2)) was developed using the summation of the pedestrian crossing volume 

and vehicle turning volume as the exposure variable. The γ1 are the regression coefficients 

 Intersection name 

LPI 

Pres-

ence 

Cycle 

Length 

[s] 

Vehicle 

LOS 

Vehicle Delay 

[s/veh] 

Severe vehicle-to-

pedestrian con-

flicts [con/h] 
Extremely 

severe con-

flicts [con/h] TTC=< 1.5 and 

PET=< 1.5 

1 Church st at Gerrard 

st (px 22) 

NO 
70 

B 18.72 39 0.4 

YES D 37.60 (+101%) 13 (-67%) 0.2 (-50%) 

2 Lower Jarvis St at the 

Esplanade (px 1392) 

NO 
75 

B 15.69 49 0.5 

YES C 21.47 (+37%) 13 (-73%) 0.5 (0%) 

3 College st at Dufferin 

st (px 605) 

NO 
80 

B 17.79 47 2.5 

YES C 23.60 (+33%) 25 (-47%) 1.3 (-48%) 

4 Bloor st at Runny-

mede rd (px 331) 

NO 
98 

C 28.08 28 2 

YES D 44.22 (+57%) 26 (-7%) 0.8 (-60%) 

5 Dundas st at Jarvis st 

(px 8) 

NO 
76 

C 20.46 32 1 

YES C 32.45 (+59%) 22 (-31%) 0.5 (-50%) 

6 College st at Lans-

downe ave (px 831) 

NO 
90 

C 27.73 10 0.2 

YES D 41.02 (+48%) 1 (-90%) 0 

7 Church st at Shuter st 

(px 20) 

NO 
76 

B 17.06 26 0.4 

YES C 22.29 (+31%) 13 (-50%) 0.2 (-50%) 

8 Bloor st at Do-

vercourt rd (px 324) 

NO 
100 

C 30.41 30 0.4 

YES E 58.13 (+91%) 13 (-57%) 0.2 (-50%) 

9 Church st at Dundas 

st (px 21) 

NO 
76 

D 38.75 84 1.7 

YES E 71.67 (+85%) 57 (-32%) 1.6 (-6%) 

10 Bathurst st at Harbord 

st (px 303) 

NO 
80 

C 23.79 22 0.3 

YES D 37.71 (+59%) 8 (-64%) 0.4 (-33%) 

11 Queen st e & Church 

(px 19) 

NO 
90 

C 23.45 131 3.9 

YES D 53.98 (+130%) 48 (-63%) 2.1 (-46%) 

12 Bathurst st at Bloor st 

(px 321) 

NO 
90 

C 21.63 27 1.4 

YES C 27.23 (+26%) 20 (-26%) 0.6 (-57%) 

13 Queen st at Victoria 

st (px 28) 

NO 
90 

B 16.42 131 2.6 

YES C 22.01 (+34%) 62 (-53%) 1.3 (-50%) 

14 Elm st at University 

ave (px 82) 

NO 
84 

B 18.91 13 0 

YES F 84.86 (+349%) 2 (-85%) 0 

15 Heath st at Spadina rd 

(px 1 376) 

NO 
80 

C 20.66 6 0.5 

YES C 27.90 (+35%) 2 (-67%) 0 
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applied where LPI is present and 𝑁𝑖 is the expected number of vehicle-to-pedestrian conflicts 

per hour for intersection i: 

𝑁𝑖 = 𝑒𝛼1 ×  Exposure𝛽1 × 𝑒γ1{with  𝐿𝑃𝐼}. 
(2) 

The exposure variable for Model 2 (equation (3)) is the product of the pedestrian crossing and 

vehicle turning volume, and, as before, the γ1 are the regression coefficients applied where LPI 

is present: 

𝑁𝑖 = 𝑒𝛼1 ×  Exposure𝛽1 × 𝑒γ1{ with 𝐿𝑃𝐼}. 

(3) 

Model 3 (equation (4)), which, like Model 2, also uses as exposure the product of the pedestrian 

and vehicle turning volumes, was estimated to examine if pedestrian volume impacts the effect 

of LPI: 

𝑁𝑖 = 𝑒𝛼1 ×  Exposure𝛽1 × 𝑒γ1{ 𝐿𝑃𝐼 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 1}𝑒γ2{ 𝐿𝑃𝐼 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 2}. 

(4) 

The k-mean clustering algorithm (Nwanganga & Chapple 2020) was used to separate high and 

low pedestrian volumes (e.g. categories 1 and 2 in equation (4)). This algorithm employs an 

iterative approach to group the data into a pre-determined k number of clusters (i.e., 2 clusters) 

and randomly picks k positions as initial cluster centers such that each data point belongs to the 

closest cluster. This procedure is repeated until optimum convergence is achieved. As illus-

trated in Figure 6, the optimum clustering result was obtained with a ‘random’ selection of 

initial cluster centers, 300 iterations, and the ‘elkan’ k-means algorithm, which consists of two 

categories with a separation point of a pedestrian volume of 1161. The gray points in Figure 6 

depict the cluster centers, and two colors are used to differentiate the clusters: 

 

Figure 6 k-means clustering result 

Model 4 (equation (5)) was based on extremely severe vehicle-to-pedestrian conflicts (last col-

umn of Table 2) as the dependent variable: 

𝑁𝑖 = 𝑒𝛼1 ×  Exposure𝛽1 × 𝑒γ1{with  𝐿𝑃𝐼}. 

(5) 

Therefore, for this model, 𝑁𝑖 is the expected number of extremely severe vehicle-to-pedestrian 

conflicts per hour per intersection. Similar to Model 1, the summation of the pedestrian crossing 
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and turning vehicle volume was applied as the exposure variable. The γ1, as before, are the 

regression coefficients applied where LPI is present. 

The modeling results are shown in Table 3. In general, the estimated effects for all variables in 

terms of direction are consistent with logic and previous research findings. For example, more 

pedestrian and vehicle turning volumes are associated with more vehicle-pedestrian conflicts. 

And LPI implementation is associated with reduced conflicts. The p-values for all variables in 

all models were estimated to be highly significant, indicating a reasonable statistical fit for each 

model. Model 1 is better than Model 2 in terms of the lower dispersion parameter, AIC, and 

BIC. The Cumulative Residual (CURE) plots in Figure 7 confirm the superiority of Model 1 in 

that the residuals consistently oscillate around the x-axis, and there are no extended ranges of 

over or under-prediction. 

Table 3 GLM model results for vehicle-pedestrian conflicts 

Parameter 

Model 1 Model 2 Model 3A Model 3B Model 4 

Est. p-value Est. p-value Est. p-value Est. p-value Est. p-value 

Intercept -5.93 0.0002 -7.49 <.0001 -9.94 0.1863 -5.28 0.1562 -16.34 < .0001 

Ln (Pedestrian Crossing  

Volume + Turning Volume) 
1.31 < .0001 - - - - - - 1.19 0.0002 

Ln (Pedestrian Crossing  

Volume * Turning Volume) 
- - 0.87 < .0001 1.05 0.0598 0.68 0.0242 - - 

With LPI Implementation -0.76 0.0005 -0.76 0.0006 - - - - -0.65 0.0387 

With LPI Implementation 

and high pedestrian volume 
- - - - -0.76 0.0090 - - - - 

With LPI Implementation 

and low pedestrian volume 
- - - - - - -0.76 0.0207 - - 

Dispersion Parameter  0.30  0.31  0.27  0.36  0.58 

Akaike’s information crite-

rion (AIC)  
 249.75  250.55  135.37  122.31  190.16 

Bayesian information crite-

rion (BIC) 
 255.35  256.15  137.93  125.40  195.76 

For Model 3, the estimates of the parameter γ1 are identical for the higher volume (Model 3A) 

and γ2 for lower volume (Model 3B) categories, indicating that pedestrian volume does not 

materially influence the effect of LPI. Based on this outcome, it can be concluded that Model 

1, which combines the two pedestrian volume categories, is also preferred over Model 3. Given 

this preference, the form of the exposure term for Model 1 was also used for Model 4. The 

estimated coefficient in Model 1 for LPI implementation suggests a reduction in severe conflicts 

of [100 · (1 - exp(-0.76)] = 53%, approximately. This is of the same order as the reduction in 

extremely severe conflicts, [100 · (1 – exp (-0.65)] = 48%. Considering the recent crash modifi-

cation factor (CMF) estimate of 0.87 (Goughnour et al. 2021), these numbers would imply that 

a 10% reduction in pedestrian conflicts would be associated with a 2% reduction in crashes. 

Although there are no available crash prediction models for vehicle-pedestrian conflicts, there 

can be some assurance that these effects are reasonably consistent with indications from crash 

prediction models currently available for vehicle-vehicle conflicts (Peesapati et al. 2018; 

Saleem et al. 2014). 

It should be stressed that these models are simply exploratory, given that the data are very 

limited, especially for Model 4, which is arguably the most useful model, but has the largest 
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overdispersion parameter. The results nevertheless indicate that quantifying the effects of in-

fluencing factors is feasible for a full investigation with larger sample sizes. Such an investiga-

tion would consider using separate terms for vehicle and pedestrian volumes, alternative model 

forms, and the inclusion of other influencing factors found in this research to be pertinent. 

     

Figure 7 CURE plots for vehicle-to-pedestrian conflict model estimates 

6.3 Evaluation of influencing factors 

As mentioned earlier, eight additional scenarios were investigated for one intersection (Church 

and Gerard) having a high pedestrian volume during morning peak hours to gain insights into 

the effects of influencing factors on safety and operational impacts. Information on these sce-

narios, as well as the two originally investigated (#1 and #10), is presented in Table 4. 

Table 4 Definition of scenarios explored for Church and Gerard intersection 

 

LPI characteristics 

Change in 

pedestrian 

volume 

Change in 

right turn 

volume 

Change in 

left turn 

volume 

Change in 

through 

volume 

Right turn 

on red 

Change 

in lane 

width 

Scenario 1 

(original) 
EW-5 seconds 0 0 0 0 Allowed 0 

Scenario 2 EW-5 seconds 0 20% 0 0 Allowed 0 

Scenario 3 EW-5 seconds 0 0 20% 0 Allowed 0 

Scenario 4 EW-5 seconds 0 0 0 10% Allowed 0 

Scenario 5 EW-5 seconds 0 0 0 0 Prohibited 0 

Scenario 6 EW-5 seconds 0 0 0 0 Allowed 10% 

Scenario 7 EW-3 seconds 0 0 0 0 Allowed 0 

Scenario 8 EW & NS-5 seconds 0 0 0 0 Allowed 0 

Scenario 9 EW-5 seconds 20% 0 0 0 Allowed 0 

Scenario 10 No LPI 0 0 0 0 Allowed 0 

Table 5 shows vehicle delay and level of service (LOS), total severe vehicle-to-pedestrian con-

flicts, as well as extremely severe vehicle-to-pedestrian conflicts for the Church and Gerrard 

intersection based on all 10 scenarios identified in Table 4. In addition, Table 5 expresses the 

results as percent changes in delay and conflicts for Scenarios 1 to 9 compared to Scenario 10 
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(in parentheses). Furthermore, severe vehicle-to-pedestrian conflicts are reported for three dif-

ferent thresholds combinations for TTC and PET that are based on investigations by other re-

searchers. For example, in Wu et al., the TTC parameter was set at 2.7 seconds and the PET 

was set at 8 seconds (Wu et al. 2017), while in (Milosavljevic 2018; Tageldin & Sayed 2016) 

a maximum TTC threshold of 1.5 seconds and a maximum PET threshold of 1.5 seconds were 

used. 

Table 5 Delay and vehicle-to-pedestrian conflicts for ten scenarios at the Gerrard and Church intersection 

(% change compared to Scenario 10 in parentheses) 

Several observations can be made from the results in Table 5: 

• Providing LPI for both approaches (E.W. and N.S.) (Scenario 8) has the largest impact 

of all changes considered in isolation. There are substantial reductions in severe and 

extremely severe conflicts, accompanied by an increase in delay which, nevertheless, 

still results in a tolerable LOS. 

• Increased crossing distance (Scenario 6) results in, approximately, a 3% increase in se-

vere conflicts, a 100% increase in extremely severe ones, and a 69% increase in delay.  

• Prohibiting RTOR (Scenario 5) could decrease severe conflicts but increase extremely 

severe ones. There is an increase in delay which, nevertheless, still results in a tolerable 

LOS. 

• For two scenarios, severe conflicts and extremely severe ones show different trends. 

Prohibiting RTOR (Scenario 5) decreased vehicle-to-pedestrian conflicts but increased 

the extremely severe vehicle-to-pedestrian conflicts. Moreover, for Scenario 1 (provid-

ing LPI for E-W direction only), extremely severe conflicts trends did not follow the 

logical trend, which may be because the extremely severe conflicts are intuitively rare; 

in addition, each simulation iteration ran for only one hour, so that more simulation time 

may resolve the apparent anomaly. 

In summary, the results illustrate the order and direction of the effects of the influencing factors 

for pedestrian safety and delay with LPI implementations, namely, left-turn volume, RTOR 

prohibition, crossing width, duration of LPI, number of approaches with LPI implemented, and 

pedestrian volume. 

 

Vehicle 

LOS 

Vehicle delay 

[s/veh] 

Severe vehicle-to-pedestrian conflicts Extremely severe 

vehicle-to-pedes-

trian conflicts 

(TTC ≤ 2.7 & 

PET ≤ 8) 

(TTC ≤ 1.5 & 

PET ≤ 8) 

(TTC ≤ 1.5 & 

PET ≤ 1.5) 

Scenario 1 C 32.00 (+71%) 44 (-6%) 40 (-7%) 37 (-5%) 0.50 (+25%) 

Scenario 2 C 33.45 (+79%) 46 (-2%) 42 (-2%) 39 (0%) 0.40 (0%) 

Scenario 3 C 32.75 (+75%) 40 (-15%) 37 (-14%) 33 (-15%) 0.30 (-25%) 

Scenario 4 D 39.19 (+109%) 45 (-4%) 41 (-5%) 39 (0%) 0.50 (+25%) 

Scenario 5 D 41.08 (+119%) 33 (-30%) 29 (-33%) 27 (-31%) 0.60 (+50%) 

Scenario 6 C 31.73 (+69%) 48 (+2%) 45 (+5%) 40 (+3%) 0.80 (+100%) 

Scenario 7 C 23.59 (+26%) 52 (+11%) 48 (+12%) 45 (+15%) 0.80 (+100%) 

Scenario 8 D 37.60 (+101%) 18 (-62%) 15 (-65%) 13 (-67%) 0.20 (-50%) 

Scenario 9 C 32.14 (+72%) 56 (+19%) 51 (+19%) 46 (+18%) 0.60 (+50%) 

Scenario 10 B 18.72 47 43 39 0.40 
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7 Conclusions and further work 

This study provided a blueprint for using microsimulation-derived traffic conflicts to investi-

gate the design, traffic, and operational factors that can influence the impact of LPI on pedes-

trian safety without detrimentally impacting vehicle level of service. The results suggest that 

LPI can yield significant safety benefits for pedestrians while maintaining a satisfactory level 

of service for vehicles. They further indicate that potential LPI deployments need to be assessed 

on a case-by-case basis, as the effects of LPI can be significantly impacted by influencing fac-

tors such as left-turn and right-turn volumes, RTOR prohibition, crossing width, duration of 

LPI, number of approaches with LPI implemented, and pedestrian volume. The paper illustrates 

that such case-by-case assessments, using state-of-the-art software, are doable and can be val-

uable for optimizing the deployment of such strategies. 

Statistical models were developed to use estimated severe and extremely severe vehicle-to-

pedestrian conflicts to quantify the effects of LPI implementation on pedestrian-vehicle con-

flicts after controlling for pedestrian and turning vehicle volumes.  These models indicated 53% 

and 48% reductions in severe and extremely severe conflicts, respectively. Considering the 

most recent crash-based CMF estimate of 0.87 by Goughnour et al. (2021), these numbers 

would imply that a 10% reduction in pedestrian conflicts would be associated with a 2% reduc-

tion in crashes. Although there are no available crash prediction models for vehicle-pedestrian 

conflicts, there can be some assurance that these effects are reasonably consistent with indica-

tions from crash prediction models currently available for vehicle-vehicle conflicts (Peesapati 

et al. 2018; Saleem et al. 2014). 

The practical application benefits of the research lie in its contribution to evaluating the eco-

nomic and operational impacts of LPI installation. Specifically, economic impacts can be opti-

mized by identifying practical application circumstances to achieve the maximum safety benefit 

for pedestrians at a satisfactory operational Level of Service for vehicles. 

The results from this exploratory study, though promising and consistent with the literature 

(Goughnour et al. 2021; Milosavljevic 2018; Sharma et al. 2017; Saneinejad & Lo 2015) and 

logical considerations, are not generalizable in a strict sense. They do suggest, however, that 

quantifying the effects of influencing factors is feasible for a full investigation that would con-

sider using alternative model forms, larger sample sizes and the inclusion of other influencing 

factors. As such, further work could evaluate a larger sample and perhaps a wider variety of 

intersections and scenarios to make the results more generalizable and facilitate the further de-

velopment of the statistical models. Such research can be complemented by a case-control 

methodological approach applied to pedestrian crash data to identify factors that influence pe-

destrian crash occurrence at intersections with and without LPI. Considering the paucity of such 

data, it may be informative to further explore the extremely severe conflicts. 
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