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Abstract: Advanced vehicle technologies such as Advanced Driver Assistance Systems (ADAS)
promise increased safety and convenience but are also sophisticated and complex. Their presence in
vehicles affects how drivers interact with the technologies and howmuch drivers must know about these
technologies. To maximize safety benefits, drivers must use such systems appropriately. They must
understand how these technologies work and how they may change drivers’ traditional responsibilities.
Training has been recognized as an effective tool for accelerating knowledge and skills in traditional
driving. Consequently, training is gaining recognition as an important tool for improving drivers’
knowledge, understanding, and appropriate use of vehicle technologies as well. This study evaluated
the effects of different training methods on drivers’ use and understanding of vehicle automation,
specifically Adaptive Cruise Control (ACC). Licensed drivers with little to no experience with ADAS
features were randomly assigned into groups based on three training conditions: two experimental
groups, ‘User Manual’ and ‘Visualization’, and a control group with a ‘Sham’ training. Participants
were surveyed on their understanding of Adaptive Cruise Control before and after training. They
also drove an advanced driving simulator equipped with ACC. The simulated drive offered multiple
opportunities for the drivers to interact with the ACC and included embedded cues for engaging with
the system and embedded probes to measure driver awareness of the system state. The results found a
significant overall increase in knowledge of ACC after training for the experimental groups. Drivers in
the experimental training groups also had better real-time awareness of the system state than the control
group. The results indicate that training is associated with improved knowledge about the systems. It
also shows differential effects of different approaches to training, with text-based training showing
greater improvement. These findings have important implications for the design and deployment of
these systems, and for policies around driver licensing and education.
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1 Introduction

Advanced vehicle technologies such as Advanced
Driver Assistance Systems (ADAS) promise increased
safety and convenience. These systems are being
offered in most modern vehicles and thus are
increasingly easily available, accessible, and achieving
ubiquity (Bengler et al., 2014). However, these systems
are inherently sophisticated and complex, and their
presence in vehicles affects (a) how drivers interact
with the technologies, and consequently (b) how much
drivers must know about these technologies. These two
are closely related. For the former, because the systems
assist with vehicle control, a driver’s role as an engaged
operator changes. Relegating the control tasks to
automation decreases drivers’ control responsibilities
and increases monitoring responsibilities (Merat &
Lee, 2012). For the latter, drivers’ knowledge
of system capabilities and limitations affect how
appropriately they use the system. To maximize safety
benefits, drivers must use the systems appropriately
and correctly, and, therefore, must understand how
these technologies work and how they may change
drivers’ traditional responsibilities. This understanding
of such systems can be thought of as drivers’ mental
models. Carroll & Olson (1988) defined mental models
as ’a rich and elaborate structure which reflects the
user’s understanding about the system’s contents, its
functionality and the concept and logic behind the
functionality’.

Drivers’ mental models can be influenced by
design, interfaces, feedback, awareness, and
training (Krampell et al., 2020). While the intuitive
and careful design of ADAS can help with drivers’
learning and understanding, they are complex enough
that elegant design alone may not suffice, and training
may be a necessary component of ADAS usage.
Training has a rich history of improving driver safety
and performance in traditional driving. Training has
been shown to be effective in accelerating higher-order
skills and knowledge in traditional driving (Pradhan
et al., 2011). In a past study training was found
to help calibrate trust and confidence, although in
this study the improvement of knowledge and driver
responses were not measured (Pai et al., 2021).
However, training has an important role and is gaining
recognition as a potentially critical tool for improving
drivers’ knowledge, understanding, and appropriate
use of advanced vehicle technologies (Pradhan et al.,
2019). A past simulator study found that training
has helped drivers recognize edge case scenarios and

take control better as compared to drivers receiving
no training (Boelhouwer et al., 2019). A survey
study provided different levels of information and
found that the group receiving correct information
had better knowledge and understanding of using
ADAS (Blömacher et al., 2018). Gaspar et al. (2020)
used a similar approach in a simulator study and found
that strong information led to better knowledge of
ADAS. Two simulator studies with different methods
of training found that any level of training helped
drivers understand ADAS better, although interactive
group (Forster et al., 2019) and gamified training
group (Feinauer et al., 2022) demonstrated better
knowledge of ADAS as compared to owner’s manual.
Studies have also used different methods of training
such as Augmented Reality (AR) and shown that as
compared to owner’s manual, AR training lead to
higher trust, lower ADAS interaction errors and higher
user experience. Two studies by Sportillo et al. (2018a)
and Sportillo et al. (2018b) used Virtual Reality (VR)
as a training method and found that overall, VRmethod
led to quick responses, and higher user experience.

Given the background and state of this field, the
objective of our study was to further understand the
impact of training on drivers’ understanding of ADAS
technologies, with a specific focus on Adaptive Cruise
Control (ACC). The motivation behind the study was
twofold. First, to understand the impact of training
on specific technologies. Previous work has focused
on a broad spectrum of technologies under the ADAS
umbrella, thus the specific impact of training on any
one kind of technology is not always clear. ADAS
encompasses multiple types of technologies, and even
if only considering, say, control-type technologies such
as Adaptive Cruise Control (ACC) and Lane Keeping
Assist (LKA), the two most common vehicle control
type ADAS technologies, the two technologies differ
vastly. Thus it is important to closely examine the
impact of training content and approaches on specific
technologies. Second, the study aimed to examine the
role of the training approach or method in improving
driver understanding.

These topics were studied using driving simulation
methodologies to understand driver behavior along
with surveys to understand mental models. The use
of driving simulation allowed for the examination of
driver responses and behaviors while they were in
a more immersive driving environment where they
were actually using the ADAS system. This formed
a good complement to the second approach of using
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a mental model survey to probe drivers knowledge
and understanding of these systems. This approach
offers a novel way to examine training in the ADAS
domain as it allows for a study of driver responses
when immersed in ADAS, but without actually having
to measure and understand driver interactions with any
specific system. Additionally, a real-time examination
of a drivers’ knowledge or understanding of displays,
controls, and capabilities of ADAS by using this
probe paradigm may offer novel insights into driver
understanding within the actual context of the task.
Finally, an important contribution of this research
is in the development and examination of a novel
training paradigm using visualization of complex
ACC systems in the form of a state diagram (as
described further in Section 2.5). This approach
allows for the examination of alternate methods of
providing technology knowledge—without resorting to
either dense and inaccessible text on one hand, or
having to rely on technological approaches such as
driving simulation trainers, Virtual Reality, or other
complex training platforms. Given these objectives
and motivations, in this study, we used a driving
simulation platform to study the effects of different
training methods on drivers’ use and understanding of
ACC. In this research, drivers’ use was operationalized
as the actual driver operation of systems in a simulated
environment, and ‘understanding’ was assessed by
measuring drivers’ mental models of an ACC system.

2 Methodology

2.1 Objective and research questions

The objective of this study was to assess the effect of
training methods on novice drivers’ understanding of
Adaptive Cruise Control system in a simulator study.
Two experimental training methods and one control
method were used to study the efficacy of training on
drivers’ understanding of ACC.

This research study was thus designed to answer two
specific research questions:

1. Does training have a positive impact on drivers
understanding of ACC?

2. What is the role of the training method in any
perceived improvement in driver understanding of
ACC?

2.2 Participants

Twenty-four participants were recruited to participate
in the study, divided evenly by sex. The average
participant age was 24.8 years (SD = 8.57 years;
Minimum = 19 years; Maximum = 57 years).
Participants were pre-screened for age, licensure, and
understanding of ACC functionalities and limitations.
Those with valid licenses with at least three months
of driving experience, and between the ages of 18–
65 years were eligible for the study. An important
inclusion criterion was that all drivers were self-
reported novice users of ADAS, i.e. with little or no
knowledge of ACC.

2.3 Experimental design

A mixed, between, and within-group experimental
design was used for this study, with ‘Time’ (pre-
test and post-test) as the within-subject factor and
‘Training Method’ as the between-subject independent
variable. The three levels of the Training Method
independent variable included two experimental groups
(‘User Manual’ and ‘Visualization’) and a control
group (‘Sham’ training).

The dependent variables included:

1. Drivers’ knowledge of ADAS as measured by a
mental model survey (Completeness and Accuracy
ofMentalModels Survey—CAMMS, Pradhan et al.
(2022)). The survey evaluated drivers’ knowledge
of ACC, functionality, capabilities, and limitations.
This survey was administered before training to
establish a baseline knowledge of ACC and then
again after training. The survey consisted of 75
unique items, and all participants answered on a
scale of 1 (StronglyDisagree) to 6 (StronglyAgree).
Participants’ scaled agreement responses were then
translated on a scale of 0 to 100. An overall Mental
Models score was derived from each participant’s
average of all questions.

2. Accuracy of drivers’ real-time verbal responses to
probes about ADAS status. At various times during
the drive, participants received a pre-recorded
verbal probe asking questions about the state of
the ACC. Participants were expected to respond to
these probes verbally. Examples of these verbal
probes include ’What Speed are you currently
traveling at?’, ’What is the current ACC Distance
Setting?’ or ’Is ACC currently active?’. There were
six verbal probes over the duration of the drive.
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3. Accuracy of drivers’ real-time manual responses to
instructions to operate the ADAS during the drive.
During the drive, participants were instructed to
perform certain operations with the ACC via a pre-
recorded verbal message. The operations included
actions such as changing ACC speeds or distance
settings.

4. Reaction time for drivers’ manual responses.
Drivers’ reaction times to manual responses were
measured. Reaction times were measured from the
completion of the instructions until the first action
was taken.

2.4 Driving simulator and simulated routes

A high fidelity fixed-base full-cab driving simulator
running the Realtime Technologies (RTI) SimCreator
engine was used for this study. The RTI fixed-based
driving simulator consists of a fully equipped 2013
Ford Fusion cab placed in front of five screens with a
330-degree field of view. The cab also features two
dynamic side mirrors and a rear-view mirror which
provide rear views of the scenarios for the participants.
The simulator is equipped with a five-speaker surround
system for exterior noise and a two-speaker system
for simulating in-vehicle noise (Figure 1). RTI’s
SimADAS equips the simulator with ADAS features
such as Adaptive Cruise Control, Traffic Jam Assist,
etc. The ACC system mimics those in the real world
and can maintain the vehicle’s speed and distance
from the lead vehicle according to the operators’ set
parameters. The SimCreator engine also makes it
possible to script various traffic and edge case events,
and introduce alerts and visual notifications to the
drivers through the instrument panel and center console
of the cab. In addition to vehicle measures, the
simulator also collects real-time video recordings of
the participants’ handmovements, feet movements, and
verbal responses.

Participants were first given a five-minute training
with explanation of the ACC controls (On, Off, Set
Speed, Resume, etc.) and were asked to drive a short
familiarization drive to help them get accustomed to
the simulator.All participants drove for approximately
ten minutes in the simulator. Two separate drives
were designed for this experiment with a reversed
sequence of driving scenarios for counterbalancing
purposes. Each participant drove one of the two drives.
The drives consisted of both interstate/freeway and
rural/residential roadways with other traffic and road

Figure 1 Fixed-base driving simulator

users, and commonplace driving events and scenarios.
Speed limits were 65 mph on freeways and roads and
55 mph on rural roads.

2.5 Training approaches

Three training approaches were designed for this study:
Visualization (V), Text-Based User Manual (M), and
Sham (S).

The Visualization Training was based on
prior conceptual work on advanced vehicle
technologies (Pradhan et al., 2020). Accordingly, the
training content included a visual representation of an
ACC system as a state diagram (see Figure 2 for an
example of the illustration). The diagram displayed the
various possible states (or conditions) of ACC within
circles. The connectors between the states explained
how one could switch between states by using various
controls. For example, a circle could represent an ’ACC
ON’ state, and another circle could represent an ’ACC
OFF’ state and connecting lines between the circles
showed that one could move from one state to the
other using the appropriate controls (i.e. the ON button
on the steering wheel). The visualization was further
supplemented with some instructions about limitations
of ACC.

The Text-Based User Manual training included written
descriptions and warnings about ACC typically found
in an owner’s manual. For this study, the content for
this approachwas compiled from actual usermanuals of
vehicles that offered ACC but presented in a simplified
format to minimize time spent searching for relevant
information. This method contained no visualizations
other than schematic diagrams of control buttons.

The sham training was included in the design for a
control group. This training approach consisted of text
description of unrelated ADAS features, i.e. Forward
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Figure 2 Visualization Training state diagram
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Collision Warning systems (FCW) and Lane Departure
Warning Systems (LDW) that were derived from user
manuals and presented in a manner like the Text Based
User Manual training.

2.6 Experimental procedures

The experimental study protocol was approved by
the Institutional Review Board. The study required
participants to visit the driving simulator laboratory.
All participants completed an informed consent form.
Participants then completed a demographics survey,
a Trust survey (Jian et al., 2000) and the CAMMS
survey (Pradhan et al., 2022). The participants were
then administered the training intervention based on the
condition they were randomly assigned to. Following
the training, participants were again administered the
trust and CAMMS survey.

After this, participants completed the simulator
drives. Participants were familiarized with the
driving simulator platform and the ACC system in the
simulator with verbal instructions followed by a brief
familiarization drive. Once participants stated they
were comfortable, they started the experimental drive
on the advanced driving simulator equipped with ACC.
The simulated drive offered multiple opportunities for
the drivers to interact with the ACC and included
embedded cues for engaging with the system and
embedded probes to measure driver awareness of the
system state. During the drive, participants’ operation
of the system controls and drivers’ verbal responses to
embedded probes were recorded.

2.7 Data analysis

The differences between the pre-training and post-
training mental models were measured through the
CAMMS survey. The participants’ responses were
translated to a scale of 0 to 100 for correctness of the
answer for all 75 items. An overall composite survey
score was derived as the average of the mean. An
ANOVA (analysis of variance) of the survey scores
was performed across the three groups. An ANOVA
is a statistical technique used to analyze variations in a
response variable measured under different conditions.

Analyses were performed using R Statistical Software
(v4.0.2). We compared differences in the pre- and
post-training CAMMS scores individually, by using
R packages such as ‘mosaic’, ‘rstatix’ and ‘ggplot to
arrange and visualize individual survey items on the

mental models survey across the three training groups.

3 Results

In this paper, we report drivers’ use and understanding
of ACC as measured and analyzed across the following
outcomes: Knowledge of ACC, awareness of system
state in real-time, and accuracy and speed of driver
actions while engaging in ACC state changes.

3.1 Drivers’ understanding of ACC

Figure 3 illustrates the average mental model scores
(CAMMS scores) for all participants and by group. A
two-way 3 (type of training method: M, S, or V) x 2
(Time Condition: Pre or Post Training Scores) mixed
analysis of variance (ANOVA) with repeated measures
on the survey score variable was conducted. The
analysis found a significant effect of time condition but
no main effect of training method. The main effect of
condition type yielded an F ratio of F (1, 21) = 30.951,
p < 0.001, with a significant difference between Pre-
Training Survey (M = 54.255, SD = 10.32) and Post
Training Survey (M = 65.455, SD = 11.83). This
suggests that participants’ knowledge changed between
Pre and Post Training Surveys, while the training
type (M, S or V) had no effect on the participants’
knowledge.

The pairwise comparisons for the main effect of
condition type were corrected using a Bonferroni
adjustment method. The test indicates a statistically
significant effect between Pre-Training and Post
Training Survey, specifically for Visualization Group
(p = 0.01) and Text-Based group (p = 0.04), but not for
the Sham group.

3.2 Accuracy of verbal responses

Figure 4 represents the average accuracy of the
drivers’ verbal responses to the probes about ACC
as they drove. The participants who received user
manual training and visualization training had higher
mean accuracy of verbal responses (0.85 and 0.77,
respectively) than the control group (0.708). A one-
way ANOVA was conducted to analyze the accuracy
of verbal responses based on the participants’ training
group. Analysis revealed that there was no main effect
of the training method on the accuracy of participants’
verbal responses (F = 1.4863; p = 0.229; η2 = 0.02).
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Figure 3 Driver knowledge before and after training

3.3 Accuracy of manual responses

The average accuracy of the drivers’ manual responses
to instructions is illustrated in Figure 5. Overall, the
visualization group had a higher mean accuracy of
manual responses (0.775) than the control group (0.75)
and the manual training group (0.725). However,
these differences were not statistically significant as
a one-way ANOVA revealed no main effect of the
trainingmethod on the accuracy of participants’ manual
responses (F = 0.2561; p = 0.776; η2 = 0.02).

3.4 Response times for manual responses

On average, the control group took longer to manually
respond (4.18 seconds) than the manual training (3.83
seconds) and visualization training (4 seconds) groups.
However, a one-way ANOVA revealed that there
was no main effect of the training method on the
participants’ response times for manual responses (F =
0.2821; p = 0.757; η2 = 0.03).

4 Discussion

The results of the above analyses indicate an
overall increase in knowledge of ACC after
training. More specifically, drivers from both the
experimental training groups, i.e. those who received
the Visualization training and the User Manual
training, had significantly improved knowledge and
understanding of ACC. This outcome underscores the
potential importance of training as one significant and
viable approach for improving users’ knowledge of
these complex vehicle systems.

The results of this study align with previous research
conducted in improving driver’s understanding of
advanced driver assistance systems using training.
Training has been known to improve knowledge of
strengths and weaknesses about ADAS and improve
acceptance and trust in automation (Braun et al.,
2019). Reimer et al. (2010) found that before training,
drivers were unaware of the benefits ADAS could
provide and help in reducing stress as well as improving
their performance. After training, drivers exhibited
decreased stress, positive opinions and willingness
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Figure 4 Drivers’ verbal response accuracy

to buy the system. Training has also been known
to improve confidence in using and learning to use
ADAS, as found by Abraham et al. (2017) in a
demonstration and explanation-based study. Koustanaï
et al. (2012) provided multiple methods of training
to older drivers and found that familiarization in a
simulator system improved system interactions and
trust in system—as compared to owner’s manuals and
no training. However, training of any level has been
found to improve driver understanding and use of
ADAS (Abraham et al., 2018).

An outcome of note from this study is that there was
no significant difference in the level of improvement
in knowledge between the two experimental groups.
The visualization training was developed to reduce
the density of information provided by user manuals
and to simplify the conceptual models of ADAS
with the help of illustrations of various states and
ways to switch between them. User manuals are
generally dense in terms of text and seem relatively
inaccessible since looking for specific information
about system controls means parsing through an entire
user manual. There is some evidence that drivers

partially or incompletely read through user manuals
for their information (Mehlenbacher et al., 2002).
Given these, there was a slight expectation that
the visualization training may be more efficient or
effective, but that was not supported by the results. One
possible interpretation of this result is that the above
mentioned drawbacks of a user manual may not have
manifested enough in this experimental context. The
user manual training consisted of excerpts from the
user manual and was presented in an accessible and
concise manner. Additionally, the experiment required
the drivers to read the user manual excerpts. These
aspects may have contributed to improved learning.
In retrospect, presenting the physical user manual and
requiring the users to extract the information may have
been an interesting potential arm of this experimental
design. In a real-world context, there may be a marked
advantage of a quicker, visual method for training. This
is a potential area for further extending this work to
understand how drivers gain information.

When driver responses were measured in real-time and
in the driving context by probing drivers during the
drives, the drivers in the experimental groups generally
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Figure 5 Drivers’ manual response accuracy

scoredmore accurately than those in the control groups,
but the differences were not significant. The previously
discussed outcome from survey measures that drivers’
knowledge was significantly better in the experimental
groups after training should also have been evident in
this secondary measure of knowledge, but that was
not seen. A potential explanation may lie in the
design of the experiment itself and, more specifically,
in the content of the probes. The probed questions
were relatively easy and simple, e.g. ’What is your
current speed?’ or ’Is ACC currently active?’. The
specific probe questions used for this study may not
have been sensitive enough to measure one’s deeper
understanding of the system.

Similarly, the drivers’ manual responses to specific
system interaction instructions were more accurate
for the visualization group than the user manual
group or the control group, but the differences were
not significant. As discussed previously, it would
not be unreasonable to expect an improved manual
response in the experimental drivers, given that
cohort’s improvement in knowledge and understanding
after training. However, the current data does not

support this. Again, this could be potentially explained
by the fact that—just like the verbal probes—the
manual instructions were relatively easy and simple
(e.g. changing ACC set speed or distance). Most
drivers scored at ceiling for manual performance.
More complex interactions with the system may
have perhaps led to more sensitivity in differentiating
driver knowledge from these manual responses. Also,
in terms of reaction time or speed of responses,
while the experimental groups were slightly quicker
at responding to probes, there was no significant
difference between groups for this metric. An
important learning from this study, from the perspective
of empirical, experimental approaches, is that the
measures chosen to study the impact on drivers’
knowledge and understanding of a system are quite
critical. It appears that the dependent variables chosen
in this study may not have been the best or most
sensitive metrics to tease out differences in drivers’
understanding. This indeed returns to the original
issue and the challenges in objectively measuring
users’ mental models. Future work is recommended
in this domain, especially in ascertaining approaches
to efficiently, effectively, non-invasively, and quickly
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measure users’ knowledge of vehicle systems.

While this study indeed adds to the evidence about
the importance and viability of training as a tool to
improve driver knowledge, it did have some important
limitations that should be considered when interpreting
the outcomes. First, an important limitation is the
size and makeup of the study sample. There were
24 participants, and despite aiming for a broader age
range, the final participants skewed heavily towards
the younger age group. While the limitation of the
small sample size is obvious, it is also important
to acknowledge the potential impact of a younger-
skewing sample. This may have impacted the
outcomes, including on direct measures such as
reaction time, or indirectly by potentially influencing
knowledge gain due to differences in technological
familiarity or acceptance. A second important
limitation is that the only system studied here was ACC.
This design decision was made from an experimental
control perspective with a primary goal of reducing
confounds and focusing on ADAS learning rather
than learning for specific flavors of ADAS. However,
we recognize that ACC is vastly different from other
ADAS features such as Lane Keep Assist (LKA) and
even more different from the combined functionality
of the two (LKA + ACC). Further exploration of the
effects of training on drivers’ mental models and driver
behavior in the context of more complex automation
is critical to better understand the use and acceptance
of these technologies and to inform design and policy
where the deployment of such technology is concerned.
Another important future research focus would be to
examine if these research outcomes generalize, not
only to other types of ADAS but also to higher forms
of automation and broader user populations.

5 Conclusions

In this study, we examined the effects of training on
drivers’ use and understanding of advanced vehicle
technologies, namely Adaptive Cruise Control (ACC).
We evaluated training approaches using a driving
simulation platform. ‘Driver use’ was operationalized
as actual driver operation of systems in a simulated
environment, and ‘understanding’ as drivers’ mental
models of the system. Participants were randomly
administered one of three training approaches, and the
impact of training was examined by contrasting driver
knowledge (mental model) before and after training and
driver behaviors in terms of system use and of real-

time responses about system state across three training
conditions.

The study results show that training is associated
with improved knowledge about the systems. It also
shows the differential effects of different approaches
to training, with text-based and visualization training
showing more effectiveness. This data shows no
significant improvement in system handling accuracy
or performance after the training, indicating differences
in mechanisms between understanding and using a
system. Importantly, the results show that the training
approach may not matter much, but that outcome
may be an artifact of the experimental design and
experimental context.

These findings have important implications for the
design and deployment of these systems. A flawed or
incomplete understanding of a system’s functionalities
may lead to underuse or misuse. Training and other
educational approaches can help improve drivers’
understanding of the systems, resulting in more
appropriate and thus safer use of these systems. The
results suggest that from a practical perspective, shorter
and more accessible, and focused training may hold an
advantage over denser, text-based user manuals, but
more work is needed to understand the differences in
content and delivery. The results from this study shows
the promise of training and add to the relatively scarce
knowledge-base on research regarding training and
education for vehicle automation systems.
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