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Abstract: Studies consistently show that sharp horizontal curves increase accident rate. 

One would therefore expect roads with many sharp curves to have a higher accident rate 

than roads with few sharp curves. This is not the case. The differences in road safety be-

tween roads with different profiles of horizontal road alignment are quite small. There are 

even studies suggesting that areas having roads with many curves have a lower number of 

accidents than otherwise identical areas with less curvy roads. The question arises: How 

can it be true both that sharp curves increase accident rate and that areas with roads with 

many sharp curves do not have a higher accident rate than areas with less demanding align-

ment? The answer is likely to be found in behavioural adaptation among drivers. The acci-

dent rates both in curves and on straight sections are strongly influenced by how drivers 

adapt behaviour to the number of curves per kilometre of road. This paper shows how be-

havioural adaptation can be quantified by means of the ‘human feedback parameter’ pro-

posed by Evans. This parameter takes a value of -1 if drivers adapt behaviour so as to 

completely eliminate a risk factor. Values close to -0.7 for horizontal curves were estimated 

on the basis of micro-level studies. Thus behavioural adaptation reduces the increase in risk 

to about 30% of what it would have been without behavioural adaptation. In addition, a 

high frequency of curves leads to lower speed on the straight sections between curves. 
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1 Introduction 

Horizontal curves increase the accident rate. This has consistently been found in many studies. 

Results of some recent studies are shown in Table 1. The increase in accident rate is particularly 

sharp in curves with a radius of 150 metres or less. The studies listed in Table 1 suggest that, 

all else equal, accident rate can be reduced by 45%–65 % by flattening curves from a radius of 

50 to a radius of 100 metres. Flattening from 50 to 150 metres could reduce accident rate by 

60%–75%. 

It is also well-established that if there are many sharp curves on a road, each curve is associated 

with a smaller increase in accident rate than if there are few sharp curves. Elvik (2019a) devel-

oped a numerical example showing that the overall accident rate on a road with 7 curves per 

kilometre is not necessarily higher than on a road with 1 curve per kilometre. Thus, variation 

between roads with respect to their horizontal alignment does not necessarily imply that the 
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roads have different accident rates, even if one of the roads consists of more curves than the 

other road. How is this possible? All else equal, a road that has a large number of sharp curves 

would be expected to have a higher accident rate than a straight road with just one curve. 

Table 1 Relative accident rate in curves as a function of radius—set to 1.00 for a radius of 

1200 metres 

Curve radius 

(metres) 

Banihashemi 

(2016) 

Gooch et al. 

(2016) 

Gooch et al. 

(2018) 

Geedipally et 

al. (2019) 

1200 1.00 1.00 1.00 1.00 

600 1.83 1.08 1.09 1.09 

500 2.15 1.12 1.13 1.13 

400 2.62 1.17 1.19 1.18 

300 3.36 1.27 1.29 1.29 

200 4.80 1.48 1.54 1.53 

150 6.17 1.73 1.83 1.81 

100 8.80 2.38 2.57 2.53 

50 16.13 6.11 7.22 6.97 

This paper suggests that the explanation can be found in how drivers adapt their behaviour to 

road alignment. Driver behaviour is guided by expectations formed through experience. The 

frequent occurrence of curves generates an expectation that the road will continue to be curvy 

(Alexander & Lunenfeld 1986). Drivers are then better prepared for the next curve than on a 

road where there are fewer curves. Fuller (2005) suggests that drivers try to maintain a stable 

level of task difficulty when driving. If driving does not demand the full attention of the driver, 

it becomes boring and may induce drowsiness. Driving in curves demands more attention than 

driving on straight road sections. Drivers will adapt to variation in task difficult mainly be var-

ying speed.  

The main research question explored in this paper is how and to what extent drivers adapt be-

haviour to varying frequencies of horizontal curves when driving along a road. To indicate the 

extent of behavioural adaptation, the concept of human feedback parameter, introduced by 

Leonard Evans (Evans 1985), will be applied. The main research problem is whether it is pos-

sible, and gives plausible results, to quantify the degree of driver behavioural adaptation to a 

high frequency of horizontal curves. More specifically, can an estimate of the ‘human feedback 

parameter’ proposed by Evans (1985) be developed? 

2 The degree of surprise of a curve  

Nearly 50 years ago, Norwegian researcher Nils Skarra (Skarra 1973) introduced and formal-

ised the concept of ‘degree of surprise’ to predict accident rate in horizontal curves. His idea 

was that a sharp curve encountered after driving on a long straight section will be more surpris-

ing to drivers than a sharp curve following immediately after another sharp curve. To formalise 

this idea, he measured lateral acceleration and its standard deviation each 10 metres when driv-

ing at normal speed, continuously updating these statistics as running averages for a given 

length of road. On a straight road section lateral acceleration will be close to zero and hardly 

vary. When a sharp curve is entered, lateral acceleration will increase rapidly. Denoting lateral 

acceleration by X, he defined degree of surprise as: 
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Degree of surprise = 𝛹 =
𝛥𝑋

𝑆𝑥
  

(1) 

Delta of X (ΔX) is an instantaneous change in lateral acceleration and Sx is the standard deviation 

of lateral acceleration for a given length of road. The computer program estimating degree of 

surprise was subsequently run on all national roads in Norway and curves identified as surpris-

ing were signposted. This improved safety in the curves (Elvik 2012). Empirical Bayes esti-

mates of the effects of signing surprising curves range from 15% to 30% accident reduction. 

3 Application of accident prediction models 

To get an idea about the extent to which driver behavioural adaptation influences differences 

in safety between roads with a different number of curves with different horizontal radius, ac-

cident prediction models developed by Dietze & Weller (2011) have been applied. These mod-

els were chosen because they, unlike most other models, contain a term for the length of the 

straight road section preceding a curve. The following model was developed for curves: 

Number of accidents =  

= e(−7.406+ln(𝐴𝐴𝐷𝑇)∙0.638+ln(𝑙𝑒𝑛𝑔𝑡ℎ)∙0.260+0.001∙(𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)−0.004∙(𝑟𝑎𝑑𝑖𝑢𝑠))  

(2) 

AADT is Annual Average Daily Traffic. Length is length of a curve in metres. Length of straight 

section is the length in metres of a tangent section preceding the curve. Radius is radius of the 

curve in metres. Based on the data given, an AADT of 1500 has been assumed. It has been 

assumed that the radius of curves varies between 50 and 500 metres and that the length of curves 

is identical to their radius. This means that each curve is a radian, i.e. has a deflection angle of 

57.3 degrees. For straight road sections, the following model was developed: 

Number of accidents =  

= e(−11.308+ln(𝐴𝐴𝐷𝑇)∙0.480+ln(𝑙𝑒𝑛𝑔𝑡ℎ)∙0.890−0.004∙(𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑟𝑎𝑡𝑒))  

(3) 

AADT and length are defined as above. Curvature change rate is the curvature of the section in 

gon/km. According to the authors, most road sections had values of gon/km less than 100, and 

in the application of the model, the term was omitted, i.e. only the coefficients for AADT and 

length were applied (gon = a metric degree system according to which the circumference of a 

circle is 400 degrees). The variables included in the model for curves define curvature change 

rate and the variable is therefore superfluous in the model for sections as a road is assumed to 

consist of straight sections (curvature change rate = 0) and horizontal curves. An AADT of 1500 

was used when applying the model. 

Eight numerical examples have been developed based on the models. These examples will be 

explained by reference to Table 2. 

In each numerical example, a road section of 1 kilometre is considered. This section consists of 

either 2, 4 or 8 horizontal curves with a radius of 50 or 100 metres or of 2 or 4 horizontal curves 

with a radius of 150 metres. The curves have been assumed to be located as far from each other 

as possible. In the first example, the two curves are located at the beginning and end of the road 

section and have a 900 metres straight section between them. Remember that the length of each 

curve is equal to its radius. When the road has 4 curves with a radius and length of 50 metres, 

the total length of the curved sections is 200 metres. Again, two of the curves are located at the 

beginning and end of the road, the other two are located as far apart as possible.



 

 

Table 2 Accidents in curves: eight numerical examples 

Panel A. Expected number of accidents as a function of curve radius and number of curves 

Radius of each 

curve (m) 

Number of 

curves 

Total length of 

curves (m) 

Length of each 

straight section (m), 

number of sections 

in parentheses 

Accidents in 

each curve 

Accidents on 

each straight 

section 

Total accidents 

in curves 

Total accidents 

on straight 

sections 

Accidents in 

total 

50 2 100 900 (1) 0.515 0.175 1.030 0.175 1.205 

50 4 200 266.7 (3) 0.271 0.059 1.096 0.177 1.273 

50 8 400 85.7 (7) 0.228 0.022 1.824 0.154 1.978 

100 2 200 800 (1) 0.457 0.157 0.914 0.157 1.071 

100 4 400 200 (3) 0.228 0.046 1.004 0.138 1.142 

100 8 800 28.6 (7) 0.211 0.008 1.688 0.056 1.744 

150 2 300 700 (1) 0.376 0.140 0.752 0.140 0.892 

150 4 600 133.3 (3) 0.214 0.032 0.856 0.096 0.952 

Panel B. Driver speed adaptation in curves and predicted number of accidents with modified regression coefficients 

Radius of each 

curve (m) 

Number of 

curves 

Total length of 

curves (m) 

Length of each 

straight section (m), 

number of sections 

in parentheses 

Mean speed on 

straight section 

(km/h) 

Mean speed in 

curves (km/h) 

Speed reduction 

(km/h) 

Maximum safe 

speed in curve 

(km/h) 

Accidents with 

modified 

coefficients 

50 2 100 900 (1) 76.9 63.1 13.8 69.7 2.891 

50 4 200 266.7 (3) 70.9 58.9 12.0 69.7 2.198 

50 8 400 85.7 (7) 59.0 50.5 8.5 69.7 2.450 

100 2 200 800 (1) 78.1 70.5 7.6 95.7 2.503 

100 4 400 200 (3) 72.1 66.3 5.8 95.7 1.791 

100 8 800 28.6 (7) 60.1 57.9 2.2 95.7 1.857 

150 2 300 700 (1) 79.3 74.3 5.0 114.7 2.072 

150 4 600 133.3 (3) 73.3 70.1 3.2 114.7 1.346 
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There will, in this case, be three straight road sections between the curves, with a total length 

of 800 metres. Each straight section will have a length of 800 / 3 = 266.7 metres. All other cases 

have been defined the same way. 

For the first case, the expected number of accidents in each curve is estimated as follows: 

Expected number of accidents =  

= e(−7.046+ln (1500)∙0.638+ln (50)∙0.26−0.004∙50+0.001∙900) = 0.515  

(4) 

The first term is the constant term, the second is AADT (traffic volume), the third is the length 

of the curve, the fourth is the radius and the fifth and final term is the length of the straight 

section ahead of the curve. Since there are two curves, the expected number of accidents in 

curves is 0.515 ∙ 2 = 1.030. 

The expected number of accidents on the straight sections is estimated as follows: 

Expected number of accidents = e(−11.308+ln (1500)∙0.48+ln (900)∙0.89) = 0.175  

(5) 

The first term is the constant term, the second is AADT and the third is the length of the straight 

section. The total number of accidents becomes 1.030 + 0.175 = 1.205. 

The other cases have been estimated the same way, the only differences being a different num-

ber of curves and a different number of straight sections and the share of total road length 

(1 kilometre) covered by curves and by straight sections. AADT has been kept constant in all 

estimates. 

It is seen that the increase in the number of accidents is small when the number of curves in-

creases from two to four, but somewhat larger when the number of curves increases to eight 

(this case was not included for curve radius 150 metres). As far as flattening curves is con-

cerned, the estimated differences in the expected number of accidents are quite small. Thus, for 

two curves, increasing the radius of each curve from 50 to 100 metres is estimated to reduce 

the number of accidents by about 11%, from 1.205 to 1.071. Increasing the radius from 50 to 

150 metres is estimated to reduce the number of accidents by 26%, from 1.205 to 0.892. Esti-

mated effects remain small when the number of curves is greater. If there are eight curves per 

kilometre, increasing their radius from 50 to 100 metres is estimated to reduce the number of 

accidents by about 12%, from 1.978 to 1.744. 

These results are close to those found by Hauer (1999) in his analysis of safety and the choice 

of degree of curve. He found, for example, that increasing curve radius from 175 metres to 583 

metres would reduce the expected number of accidents by 16%. However, both the models 

applied in this paper and the analysis presented by Hauer show that: (1) a smaller curve radius 

and (2) a larger number of curves per length of road, are consistently associated with a higher 

number of accidents. It is therefore quite surprising that some studies made at the aggregate 

level have found that areas with more curvy roads tend to have fewer accidents than areas with 

less curvy roads. The next section reviews some of these studies. 

4 Studies at the aggregate level 

Haynes et al. (2007) studied district variations in road curvature in England and Wales. Curva-

ture was measured as: number of curves per kilometre of road; the ratio of actual distance to 

straight distance; the share of road length that was straight; the cumulative angle turned per 

kilometre and the mean angle turned per curve. Subsequent studies by Haynes et al. (2008) and 
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Jones et al. (2012) have used a similar set of variables to indicate curvature. Applying negative 

binomial regression, these studies have consistently found negative coefficients for the number 

of curves per kilometre of road and cumulative deflection angle. The values of the coefficients 

vary from study to study, but all studies indicate that areas that have roads with many curves 

and large deflection angles have fewer accidents than areas with fewer curves making more 

gentle turns of direction.  

In a similar vein, Høye (2014) found an interaction between speed limit and the influence of 

the number of curves on the number of accidents. Employing negative binomial regression, 

Høye (2014) estimated coefficients for the number of curves per kilometre of road by speed 

limit on national and county roads in Norway. A curve was defined as any section with a length 

of at least 50 metres and a radius of 300 metres or less. The estimated relationships are presented 

in Figure 1. 

 

Figure 1 Influence of curves on accident rate on national and county roads in Norway by speed limit. 

Source: Høye (2014) 

On roads with speed limits of 30, 40 or 50 kilometres per hour, curves are associated with a 

reduced accident rate. On roads with these speed limits, a driver may not have to reduce speed 

to safely negotiate a curve but has to pay attention to the course of the curve. In short, curves 

are likely to make drivers more alert and pay more attention to the driving task. On roads with 

speed limits of 60 km/h or 70 km/h, accident rates are not associated with the number of curves 

per kilometre of road. On roads with speed limits of 80 km/h or 90 km/h, accident rate increases 

as the number of curves per kilometre increases. On these roads, drivers may have to slow down 

in curves. 

Can these results be reconciled with the estimates developed by means of the models developed 

by Dietze & Weller (2011)? Is it possible both that accident rate increases in horizontal curves 

and that areas with roads with many horizontal curves are safer than areas with roads with few 

horizontal curves? 

To answer these questions, it is important to remember that the coefficients estimated in statis-

tical models are uncertain. Small changes in their value could be associated with large changes 

in the predicted number of accidents. To illustrate this, the number of accidents predicted by 
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the models developed by Dietze & Weller (2011) was re-estimated by making the following 

changes in the coefficients in the model for curves: 

The coefficient for curve radius was changed from -0.004 to -0.0036. The coefficient for the 

length of the straight section ahead of the curve was changed from 0.001 to 0.0012.  

In the model for straight sections, the coefficient for the length of the section was changed from 

0.89 to 1.20. 

The predicted number of accidents with these changes in coefficients are shown in the rightmost 

column in panel B of Table 2. It is seen that the predicted number of accidents is lower when 

there are many curves (4 or 8) than when there are few (2). The decline is not monotonous, but 

nevertheless consistent with the finding that the number of accidents is lower in areas with 

many sharp curves than in areas with few sharp curves. At the same time, the modified coeffi-

cients are consistent with the finding that sharp curves are associated with an increased accident 

rate, the more so the sharper they are. 

5 Driver behavioural adaptation by choice of speed 

Drivers adapt their behaviour to curves. The two main forms of behavioural adaptation among 

car drivers are adaptation of speed and adaptation of alertness. Changes in alertness are difficult 

to observe, but changes in speed are readily measured. Cardoso (2005) developed speed models 

for curves and straight road sections that will be applied in order to describe how drivers adapt 

speed to alignment. The models developed for roads with paved shoulders have been applied. 

For straight road sections, speed (in km/h) is estimated as: 

Speed = −28.52 − 0.047 ∙ 𝑆 + 15.75 ∙ 𝑊 + 0.0237 ∙ 𝑅  

(6) 

S is curvature change rate, measured as gon/km, W is the width of the road (metres) and R is 

the radius of the curve preceding the straight section. Applying this to the first row of Table 2, 

a car entering the section will first drive through a curve with radius 50 metres (and length 

50 metres). This curve has the value of 63.7 gon. The width of the road is assumed to be 7 me-

tres and the radius of the curve preceding the tangent is 50 metres. When exiting the section, 

the car will drive through the second curve. All cars are assumed to travel the entire length of 

one kilometre. Speed on the straight section is then estimated as 76.9 km/h. This speed is en-

tered in equation (7) when estimating speed in curves (in km/h): 

Speed in curves = 16.44 −
158.05

√𝑅
+ 2.12 ∙ 𝑊 + 0.705 ∙ 𝑉𝑠  

(7) 

R is curve radius in metres, W is the width of the road and Vs is unimpeded approach speed 

estimated in equation (6). Speed in a curve with radius 50 metres is estimated to be 63.1 km/h. 

If the road section has four curves each with a radius of 50 metres, speed on the straight sections 

is estimated to be 70.9 km/h and speed in curves 58.9 km/h. To what extent can this adaptation 

of speed explain why roads with many curves do not necessarily have a much higher accident 

rate than roads with few curves and may even have a lower accident rate? In 1985, Leonard 

Evans introduced the concept ‘human feedback parameter’ to help formalise the analysis of 

behavioural adaptation to road safety measures (Evans 1985). He defined this parameter as 

follows: 

∆𝑆𝑎𝑐𝑡 = (1 + 𝑓) ∙ ∆𝑆𝑒𝑛𝑔  

(8) 
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The real change in safety ΔSact is a function of the ‘engineering’ effect of a measure ΔSeng and 

the feedback parameter f. If there is no behavioural adaptation, the feedback parameter is 0, and 

the actual safety effect equals the engineering effect. If the feedback parameter is 1, there will 

be no change in safety, i.e. behavioural adaptation fully offsets the intended effect of a measure. 

The engineering effect of a safety measure is the level of safety built into it. When designing 

horizontal curves, engineers must decide on a radius that makes the curve safe to negotiate at 

the design speed of the road. The minimum radius at a given design speed is given by (Levinson 

et al. 2021): 

𝑅 =
𝑣2

𝑔∙(𝑒+𝑓𝑠)
  

(9) 

R is radius, v is speed (in metres per second), g is the acceleration of gravity (9.8 metres per 

square second), e is superelevation in the curve, and fs is the coefficient of side friction. Equa-

tion (9) can be used not only to decide on a safe radius for a curve, but also to estimate maximum 

safe speed, given the radius of the curve, its superelevation and the coefficient of side friction. 

Safe speed in the curves used as examples in this paper has been estimated by assuming a su-

perelevation of 8% (e = 0.08), which is the design standard in Norway, and a side friction coef-

ficient declining linearly from 0.2 at 50 km/h to 0.1 at 100 km/h. The resulting maximum safe 

speeds are shown in the bottom panel of Table 2. 

It is seen that the predicted speed is always below the maximum safe speed, but less so the 

fewer and sharper curves there are. It is eminently reasonable that accident rate is highest in the 

curves where the safety margin is smallest. The feedback parameter of equation (8) indicates 

how much of the built-in-safety margin drivers eliminate by means of behavioural adaptation. 

However, unlike road safety measures, a horizontal curve is a risk factor. Its engineering effect 

is to increase risk. Therefore, the question becomes: how much higher would risk in horizontal 

curves be if drivers did not adapt their behaviour to curves? One may think of driving through 

a curve at the maximum safe speed as a case of no behavioural adaptation. Thus, the further 

below the maximum safe speed actual speed is, the more drivers adapt their behaviour to avoid 

the increase in risk that would otherwise occur. An estimate of the feedback parameter can be 

obtained by computing how much lower the accident rate is in a curve compared to what it 

would have been at the maximum safe speed. Applying the exponential model of the relation-

ship between speed and the number of accidents (Elvik 2019b), and a coefficient of 0.045 for 

injury accidents, it can be estimated for the first case of two sharp curves with a long straight 

section between them that the ratio of actual accident rate to the rate expected at the maximum 

safe speed is: 

Ratio of actual accident rate to rate at maximum safe speed =  

= 𝑒(−6.6∙0.045) = 0.743  

(10) 

This corresponds to a feedback parameter of 0.743 − 1 = -0.257. Similar estimates for the other 

seven cases gave feedback parameters varying between -0.385 and -0.866. The median is -0.7 

and the mean value is -0.64. 

6 Discussion 

The sharper a curve, the higher the accident rate in the curve, all else equal. Thus, a road with 

many sharp curves ought to have a much higher accident rate than a road with few or no sharp 

curves. Only: all else is not equal. Sharp curves tend to be found on roads that have many of 
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them. This influences speed and reduces accident rate. Drivers adapt their behaviour to such an 

extent that differences in safety between bendy roads and straight roads are in some cases re-

versed: bendy roads are safer than straight roads, despite the fact that each curve is associated 

with an increase in accident rate. As illustrated by numerical examples in this paper, such a 

reversal of safety is mathematically possible even if curves are associated with an increased 

risk of accidents. 

These findings very clearly illustrate the major role of speed for the safety in horizontal curve. 

This behavioural adaptation is likely to work both ways: If curves are flattened (i.e. their radius 

increased), speed is likely to increase and any effect on the number of accidents is likely to be 

considerably smaller than the difference in accident rate between sharp and gentle curves sug-

gest. The potential for improving safety by flattening curves is greatest when the curve is an 

isolated curve coming as a surprise to drivers. Very curvy roads force speed down and are 

probably safer if left as they are rather than trying to rebuild them. 

7 Conclusions 

The main conclusions of the study presented in this paper are: 

• Overall accident rate on roads with many sharp horizontal curves is only marginally 

higher than on roads with few sharp horizontal curves. 

• Drivers adapt behaviour to horizontal curves to such an extent that differences in safety 

between roads with few curves and roads with many curves are almost eliminated. 

• It is entirely possible for areas with curvy roads to be safer than areas with straight roads, 

despite the fact that each curve increases the risk of accident. 

• Driver behaviour is much more important for the safety of a road than its geometric 

design. 

• On roads with low speed limits, an increasing number of curves per kilometre of road 

is associated with a lower accident rate. 

CRediT contribution statement 

Rune Elvik: Conceptualisation, Data curation, Formal analysis, Methodology, Writing—first 

draft, Writing—final review. 

Declaration of competing interests 

The author declares that he has no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

Acknowledgement 

The study presented in this paper was made as part on the ongoing revision of the Handbook of 

Road Safety Measures, funded by the Norwegian Ministry of Transport and the Norwegian 

Public Roads Administration, grant number 1175 to the Institute of Transport Economics. 

References 
Alexander, G. J., H. Lunenfeld (1986), ‘Driver Expectancy in Highway Design and Traffic Operations’ 

(Washington, D.C.: U.S. Department of Transportation, Federal Highway Administration, Office of Traffic 

Operations), FWHA-TO-86-1, https://rosap.ntl.bts.gov/view/dot/890, accessed 31 July 2022. 

Banihashemi, M. (2016), ‘Effect of horizontal curves on urban arterial crashes’, Accident Analysis & Prevention, 

95, 20-26, https://doi.org/10.1016/j.aap.2016.06.014. 

https://rosap.ntl.bts.gov/view/dot/890
https://doi.org/10.1016/j.aap.2016.06.014


Elvik | Traffic Safety Research vol. 2 (2022) 000009 

10 

Cardoso, J. L. (2005), ‘Safety assessment for design and redesign of horizontal curves’, presented at 3rd 

International Symposium on Highway Geometric Design (Chicago, IL, US: 29 June–1 July 2005). 

Dietze, M., G. Weller (2011), ‘Applying speed prediction models to define road sections and to develop accident 

prediction models: A German case study and a Portuguese exploratory study’ (ERA-NET ROAD project 

823137: RISMET—Road Infrastructure Safety Management Evaluation Tools), Deliverable 6.2, 

https://www.cedr.eu/download/other_public_files/research_programme/eranet_road/call_2009_safety/rismet/

06_RISMETdeliverable6_2.pdf, accessed 31 July 2022. 

Elvik, R. (2012), ‘Analytic choices in road safety evaluation. Exploring second-best approaches’, Accident 

Analysis & Prevention, 45, 173-179, https://doi.org/10.1016/j.aap.2011.12.006. 

Elvik, R. (2019a), ‘The more (sharp) curves, the lower the risk’, Accident Analysis & Prevention, 133, 105322, 

https://doi.org/10.1016/j.aap.2019.105322. 

Elvik, R. (2019b), ‘A comprehensive and unified framework for analysing the effects on injuries of measures 

influencing speed’, Accident Analysis & Prevention, 125, 63-69, https://doi.org/10.1016/j.aap.2019.01.033. 

Evans, L. (1985), ‘Human Behavior Feedback and Traffic Safety’, Human Factors: The Journal of the Human 

Factors and Ergonomics Society, 27 (5), 555-576, https://doi.org/10.1177/001872088502700505. 

Fuller, R. (2005), ‘Towards a general theory of driver behaviour’, Accident Analysis & Prevention, 37 (3), 461-

472, https://doi.org/10.1016/j.aap.2004.11.003. 

Geedipally, S. R., M. P. Pratt, D. Lord (2019), ‘Effects of geometry and pavement friction on horizontal curve 

crash frequency’, Journal of Transportation Safety & Security, 11 (2), 167-188, 

https://doi.org/10.1080/19439962.2017.1365317. 

Gooch, J. P., V. V. Gayah, E. T. Donnell (2016), ‘Quantifying the safety effects of horizontal curves on two-

way, two-lane rural roads’, Accident Analysis & Prevention, 92, 71-81, 

https://doi.org/10.1016/j.aap.2016.03.024. 

Gooch, J. P., V. V. Gayah, E. T. Donnell (2018), ‘Safety performance functions for horizontal curves and 

tangents on two lane, two way rural roads’, Accident Analysis & Prevention, 120, 28-37, 

https://doi.org/10.1016/j.aap.2018.07.030. 

Hauer, E. (1999), ‘Safety and the Choice of Degree of Curve’, Transportation Research Record: Journal of the 

Transportation Research Board, 1665 (1), 22-27, https://doi.org/10.3141/1665-04. 

Haynes, R., A. Jones, V. Kennedy, et al. (2007), ‘District Variations in Road Curvature in England and Wales 

and their Association with Road-Traffic Crashes’, Environment and Planning A: Economy and Space, 39 (5), 

1222-1237, https://doi.org/10.1068/a38106. 

Haynes, R., I. R. Lake, S. Kingham, et al. (2008), ‘The influence of road curvature on fatal crashes in New 

Zealand’, Accident Analysis & Prevention, 40 (3), 843-850, https://doi.org/10.1016/j.aap.2007.09.013. 

Høye, A. (2014), ‘Utvikling av ulykkesmodeller for ulykker på riks- og fylkesvegnettet i Norge’ [Development 

of crash prediction models for national and county roads in Norway] (Oslo: Institute of Transport 

Economics), TØI rapport 1323/2014, https://www.toi.no/getfile.php?mmfileid=36329, accessed 31 July 

2022. 

Jones, A. P., R. Haynes, I. M. Harvey, T. Jewell (2012), ‘Road traffic crashes and the protective effect of road 

curvature over small areas’, Health & Place, 18 (2), 315-320, 

https://doi.org/10.1016/j.healthplace.2011.10.008. 

Levinson, D., H. Liu, W. Garrison, et al. (2021), ‘7.4 Horizontal Curves’, in Fundamentals of Transportation 

(Engineering Library: LibreTexts project), https://eng.libretexts.org/@go/page/47345, accessed 2 August 

2022. 

Skarra, N. (1973), ‘Vegstandardprosjektet. Hovedrapport om et opplegg for å vurdere vegers standard med 

hensyn på hastighet og trafikksikkerhet’ [The road standards project. Main report on a plan to assess road 

standards with regard to speed and traffic safety] (Oslo: Institute of Transport Economics), TØI rapport 23. 

  

https://www.cedr.eu/download/other_public_files/research_programme/eranet_road/call_2009_safety/rismet/06_RISMETdeliverable6_2.pdf
https://www.cedr.eu/download/other_public_files/research_programme/eranet_road/call_2009_safety/rismet/06_RISMETdeliverable6_2.pdf
https://doi.org/10.1016/j.aap.2011.12.006
https://doi.org/10.1016/j.aap.2019.105322
https://doi.org/10.1016/j.aap.2019.01.033
https://doi.org/10.1177/001872088502700505
https://doi.org/10.1016/j.aap.2004.11.003
https://doi.org/10.1080/19439962.2017.1365317
https://doi.org/10.1016/j.aap.2016.03.024
https://doi.org/10.1016/j.aap.2018.07.030
https://doi.org/10.3141/1665-04
https://doi.org/10.1068/a38106
https://doi.org/10.1016/j.aap.2007.09.013
https://www.toi.no/getfile.php?mmfileid=36329
https://doi.org/10.1016/j.healthplace.2011.10.008
https://eng.libretexts.org/@go/page/47345


Elvik | Traffic Safety Research vol. 2 (2022) 000009 

11 

About the author 

 

Rune Elvik has been a road safety researcher at the Institute of 

Transport Economics since 1980. His main areas of research have been 

evaluation studies, meta-analysis and cost-benefit analysis. 

Rune Elvik served as editor-in-chief (together with Karl Kim) of Acci-

dent Analysis & Prevention from 2005 to 2013. He has participated in 

many European projects and contributed to the Highway Safety Manual. 

He has published more than 150 papers in scientific journals. 

 

All contents are licensed under the Creative Commons Attribution 4.0 International License. 
 

 

https://creativecommons.org/licenses/by/4.0

	1 Introduction
	2 The degree of surprise of a curve
	3 Application of accident prediction models
	4 Studies at the aggregate level
	5 Driver behavioural adaptation by choice of speed
	6 Discussion
	7 Conclusions

