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Abstract: Driving while fatigued is a considerably understudied risk factor contributing to 

car crashes every year. The first step in mitigating the respective crash risks is to attempt 

to infer fatigued driving from other parameters, in order to gauge its extend in road 

networks. The aim of this study is to investigate the extent to which declared fatigued 

driving behaviour can be predicted based on overall driver opinions and perceptions on that 

issue. For that purpose, a broad cross-country questionnaire from the ESRA2 survey was 

used. The questionnaire is related to self-declared beliefs, perception, and attitudes towards 

a wide range of traffic safety topics. Initially, a binary logistic regression model was trained 

to provide causal insights on which variables affect the likelihood that a driver engaged in 

driving while fatigued. Drivers reporting driving under the influence of drugs, fatigue, or 

alcohol, as well as speeding, safety, and texting while driving or drivers who were more 

acceptable of fatigued driving were more likely to have recently driven while fatigued. In 

contrast, acceptability of other hazardous behaviours, namely mobile phone use and drunk 

driving, was negatively correlated with fatigued driving behaviour, as were more 

responsible driver perspectives overall. To provide a more accurate detection mechanism, 

which would also incorporate non-linear effects, a Deep Neural Network (DNN) was 

subsequently trained on the data, slightly outperforming the binary logistic model. From 

the results of both models, it was concluded that declared fatigued driving behaviour can 

be predicted from questionnaire data, providing new insights to fatigue detection. 

 

Keywords: driver fatigue, fatigue detection, multi-country survey, deep learning, binary 

logistic regression 

1 Introduction 

In the domain of road safety, significant progress has been made in the form of analytical 

methods, technological advancements, and intensive research (Zou et al., 2018). Despite that 

progress, road crash numbers persist without visible reductions in recent years, barring the 

influence of the Covid-19 pandemic, which has greatly disrupted transport systems and caused 

changes in travel behavior (Aloi et al., 2020). Road safety remains a crucial issue to countries 

around the world, as road crashes constitute the number one cause of death for people aged 

between 5 and 29 years old. Furthermore, it is estimated that approximately 1.35 million people 
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each year lose their lives due to involvement in crashes (World Health Organization, 2018). In 

a study conducted in the US with a sample greater than 2,000,000 crashes, it was found that in 

94% (± 2.2%) of crashes, the critical factor behind the crash lies with the drivers (Singh, 2015; 

2018). 

For road crashes to yield reductions once again, intensified focus needs to be placed on 

investigating individual causes of road crashes, with an emphasis on more subtle and non-

obvious risk factors. Such a case is driving under the influence of driver fatigue. 

Fatigue can refer to the tiredness an individual experiences as a result of mental or physical 

effort. An example of fatigue is the tiredness caused from driving for a long time (Talbot & 

Filtness, 2017). Driving is a complex task, requiring a variety of skills such as quick response 

time and attention. Due to fatigue all these skills may decrease, thus increasing the probability 

of road crashes (Grossman & Rosenbloom, 2016). It has been shown, for instance, that 

insufficient sleep, which is a major factor resulting in fatigue while driving, led to a significantly 

longer break reaction time in a harsh breaking test (Miyata et al., 2010).  

Indicatively, past research reported that 58.6% of drivers admit to occasionally driving while 

fatigued or drowsy, and 14.5% admitted to falling asleep behind the wheel, while nearly 2% 

were involved in fatigue-related crashes during the span of a year (Vanlaar et al., 2008). On a 

similar note, the U.S. National Highway Traffic Safety Administration reported that during 

2019, a drowsy driver was involved in almost 2% of the total crash fatalities (NHTSA, 2020). 

A comparable percentage of 1.7% was identified for Finnish drivers (Radun et al., 2015). In the 

U.S., 13.1% of collisions that results in a person being admitted to a hospital and 16.5% of fatal 

road crashes have been found as related to driving while fatigued (Tefft, 2010).  

A study conducted in Ontario, in Canada, found that in a sample of 750 drivers, 60% of the 

drivers have driven while fatigued at least in some instances. Moreover, 14.5% of the 

participants reported that in the past year they have fallen asleep at least once while driving 

(Vanlaar et al., 2008). Another factor that indicates how often drivers might drive while 

fatigued is the fact that over 50% of the population in industrialized countries, do not receive 

sufficient sleep on a regular basis (U.S. National Sleep Foundation, 2013). Furthermore, 

Smolensky et al. (2011) highlighted how daylight fatigue is a non-negligible risk factor as well. 

Several prevalent sleep disorders as well as other medical disorders can results in daytime 

fatigue crashes. These conditions may vary from asthma and rheumatoid arthritis to insomnia 

and obstructive sleep apnea (Smolensky et al., 2011). 

Although there has been evidence that sleep-deprived drivers may be as dangerous as drivers 

that drive under the influence of alcohol, awareness of this danger remains relatively low 

(Grossman & Rosenbloom, 2016). Nordbakke & Sagberg (2007) indicated that although many 

drivers experience symptoms of sleepiness, they do not take them seriously. Furthermore, 

drivers may continue to drive even after they recognize they are so sleepy or too tired to drive 

(Nordbakke & Sagberg, 2007). 

Solutions to the problem of fatigue have been proposed with the introduction of blanket 

measures instead of driver-specific detection. Indicatively, Zhang et al. (2016) analyzed road 

crash data from 2006 to 2010 in China aiming for their study outcomes to have policy 

implications in order to manage the problem of fatigue crashes. The results of this study showed 

that attention should be paid to truck drivers, who have a high risk of fatigued driving. 

Moreover, it was found that another factor that might reduce fatigue crashes is road monitoring 

during rush and morning hours, as well as the improvements of road conditions. Lastly, it was 

suggested that if further measures are also applied, such as mandatory rests after long hours of 

driving, then fatigue crash cases would be further reduced (Zhang et al., 2016). Such measures 
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may vary from a 30 minute break after 8 hours of driving to a limit of maximum hours of driving 

every day (U.S. Federal Motor Carrier Safety Administration, 2011).  

Unlike other driving impairments (e.g. driving under the influence of drugs or alcohol), which 

are measurable with various devices and imposed legal limits, driver fatigue is very hard to 

measure. Therefore, as a preliminary approach to this issue, it is imperative to clarify how 

overall driver perspectives and perceptions of issues regarding driving while fatigued influence 

their own behavior of fatigued driving. Such an endeavor can benefit from advances in 

analytical tools in the form of an investigation aided by machine/deep learning to the aggregated 

level, which, to the knowledge of the authors, is an unexplored research venue. 

In light of the previous, the aim of this study is to investigate the extent to which fatigued 

driving behavior can be predicted based on overall driver opinions and perceptions on that issue. 

In other words, an examination of how various self-declared beliefs, perceptions and attitudes 

can influence road user choices on whether to drive under the influence of fatigue is conducted. 

To that end, a broad cross-country driver sample will be exploited for the exploration of driver 

fatigue. Data from the ESRA2 survey are utilized, encompassing responses from 47 countries. 

The input questions are related to self-declared beliefs, perception, and attitudes towards 

driving, all of which might affect a driver’s choice of whether to drive under the influence of 

fatigue. Initially, a traditional binary logistic regression model is fitted for an exploratory 

correlation analysis. Subsequently, a Deep Neural Network (DNN) is considered to better 

capture non-linear effects or underlying patterns in the considered relationships, which may be 

reflected in better predictive performance by the DNN.  

2 Literature relevant to fatigue and drowsiness detection 

Several studies have addressed the problem of fatigue by aiming to detect it in drivers. Such 

studies typically base their analysis on different features of driver behavior, and have been 

successful on  fatigue detection. Research conducted by Feng et al. (2009) found that fatigued 

drivers usually make less steering micro-corrections than normal ones. Furthermore, Sayed & 

Eskandarian (2001) were able to create an ANN, which used the steering angle as input, that 

classified drivers as drowsy or non-drowsy. The model had 88% accuracy for drowsy drivers, 

and a 90% for non-drowsy ones. Another interesting study was able to combine and analyze 

the steering wheel angles and the yaw angles, in order to detect fatigue with an accuracy of 88% 

(Li et al., 2017).  

Other behavioral features, which can be obtained more easily and can be useful when it comes 

to detecting drowsy driving, are the lateral and longitudinal accelerations of the vehicle. Wang 

et al. (2015) used the random forest (RF) algorithm and managed to create a model that detects 

drowsy drivers with an accuracy of 84.8%. The main input parameters for their model consisted 

of three parameter types, including steering angle, lateral acceleration and longitudinal 

acceleration. The authors note that the RF algorithm showed increased resilience to data noise 

compared to an ANN algorithm developed for the task of drowsiness detection. 

Apart from methods based purely on driving behavioral features, there have been studies that 

managed to detect fatigued driving using physiological features. A common physiological 

response used to detect fatigue is the response of the eyes. Khan & Mansoor (2008) managed 

to track the eyes of drivers in order to detect real time fatigue, with an accuracy of 90%. In 

order to make such a detection system more applicable, Kong et al. (2015) suggested a new 

system that which is based on machine vision and the AdaBoost algorithm. This system can be 

integrated in smart devices, such as a smartphones or tablets, and uses the percentage of 

duration of closed-eye state (PERCLOS). That system aims to detect eye openness/closeness 

and classify fatigue based on this rate, instead of direct detection of eye parameters. 
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Sometimes, visual systems used to monitor face and eye are susceptible to environmental 

factors and often have large errors in judgment since they use fixed thresholds for the face 

characteristics. To address this problem, Kening et al. (2020) proposed a new fatigue detection 

algorithm, which is based on a multi-feature facial fusion process. In contrast to ordinary fatigue 

driving detection algorithms, the proposed one takes into account the driver’s characteristics 

and makes predictions based on the size of their mouth and eyes. The authors of the study claim 

that this feature adds high accuracy to their detection system. When tested, the algorithm was 

able to detect fatigue with an accuracy of 95.10%, using the time drivers’ eyes were closed, 

blink frequency and yawning frequency as inputs. 

As a different response, studies have tried using advanced physiological sensors in order to 

predict fatigued driving. Specifically, Zhang et al. (2014) created a real-time fatigue monitoring 

system, which used electroencephalogram (EEG), electromyography (EMG), and 

electrooculography (EOG) signals. Their model managed to obtain accuracies from 96.5% to 

99.5%. Although the latter method of detecting real-time fatigue produces reliable and accurate 

results, it has been suggested that it is not the ideal system for implementation since the data 

acquisition is hard, with electrodes being needed. Instead, a combination of vehicular features, 

such as steering wheel angle and lane crossing, and physiological features (e.g. eye and head 

movement) has been suggested to produce the most applicable and reliable method for fatigue 

detection (Sikander & Anwar, 2018). 

The above studies have achieved successful static or real-time fatigue detection. Fatigue 

prediction, however, has received less attention from researchers. A prediction process becomes 

crucial for the near future, as automated driving is expected to become an integral part of 

people’s lives. In all likelihood, there will be instances where the system must request the driver 

to retake control of the vehicle, and they must be ready and able to assume control. Some studies 

have focused on how fatigue progresses in automated driving. For example, it was found that 

after 20 minutes of automated driving, drivers had fatigue signs (Feldhütter et al., 2016). 

Gonçalves et al. (2016) concluded that after 15 minutes of highly automated driving, 

participants were feeling fatigue. A more recent study managed to predict the time in which the 

driver, in highly automated driving, transitions from non-fatigued to fatigued, which was 

achieved using physiological features. The model managed to predict the transition 13.8 

seconds ahead of time with an accuracy of 97.4% and 99.1%, for the two different models used 

(Zhou et al., 2020). 

Most of the aforementioned studies were conducted in driving simulators, and although they 

produced high accuracy models, their transferability may become challenging. Li et al. (2021) 

proposed a simple method to detect fatigue driving in a real-world driving environment. This 

method works by measuring the driver’s grip force on the steering wheel. The results showed 

that there is a high correlation between the grip force and fatigue, with fatigued drivers having 

a larger variation in their grip force. Although the recognition rate was 88.3%, the study lays 

the foundation for applicable fatigue detection systems. Another more readily applicable 

method is the one developed by Parsa et al. (2021), which uses pressure sensors placed on the 

seat and the backrest of the driver. The fatigue index of the system is divided in five parts and 

the driver is considered to be tired when they have crossed 75% of the fatigue index. Drivers 

are assigned a specific fatigue index depending on their body position. For example, if the driver 

is in the “flopped” position, which means that they are immersed into the seat, then the system 

recognizes them as extremely fatigued.  

Despite these notable results, a knowledge gap for more aggregate predictions and estimates 

for the driving population is detected in the literature. A critical problem related to fatigued 

driving is the fact that fatigue is an inherently difficult condition to regulate. Law enforcement 
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authorities are able to measure and detect driving under the influence of alcohol or drugs. 

Respective limits of acceptable thresholds are established by law, and their exceedance is 

considered a violation. However, such protocols and enforcement systems are not established 

for fatigue.  

Therefore, to aid road management authorities and lawmakers, it is necessary to obtain an 

estimate of the extent of the phenomenon of driving while fatigued. The design of the present 

study aims to exploit a broad questionnaire sample in lieu of driver simulators and eye-tracking 

devices, in order to (i) gain a wider perspective from a large sample consisting of participants 

from 47 countries, which would not be feasible for an instrumented experiment, and to (ii) 

explore the feasibility and usefulness of using questionnaire data for the prediction of driving 

while fatigued amongst driver samples. Regarding the second point, adequate results promise 

more transferability, especially in countries/regions with less developed infrastructure, as a 

questionnaire can easily be administered and subsequently analyzed.  

3 Methodology 

3.1 The ESRA survey 

ESRA (E-survey of Road users’ Attitudes) is a joint initiative of road safety institutes from all 

over the world, aiming to collect and analyze data from road users on their opinions, attitudes 

and behavior towards traffic risks. With the aforementioned data ESRA aims to scientifically 

support road safety policy at international level, as well as to develop a series of road safety key 

performance indicators. Each ESRA iteration aims to include more countries. The ESRA 

edition used in this research, ESRA2, was completed in two waves: the first one was released 

in 2018 with 32 countries taking part, while the second was completed in 2020 and had an 

additional 16 countries, totaling 48 participant countries. More details about the methodology, 

data processing and questionnaires are provided in Pires et al. (2020).  

Several past studies have utilised the expertise of ESRA and conducted analyses exploiting 

ESRA data. Indicatively, Yannis et al. (2020) explored the road safety performance and 

attitudes of vulnerable road users (VRUs). Goldenbeld et al. (2020) found that in Europe drug 

driving was less frequently reported than drinking and driving, while in other continents it was 

reported as frequently. Ziakopoulos et al. (2021a) examined several unsafe powered-two-

wheeler rider behaviours using ESRA2 data and found that they are correlated with a number 

of causal factors and with each other. 

The ESRA2 survey addresses a wide range of thematic areas for most road users. The main 

thematic areas considered in this paper were (Meesmann et al., 2021): 

• Self-declared behavior in traffic  

• Acceptability of safe or unsafe traffic behaviors 

• Attitude towards safe or unsafe traffic behaviors 

• Subjective safety and risk perception 

• Support for policy measures 

 

Several variables with the ESRA questionnaire were considered for this research. Through 

numerous trials and iterations in the modelling process, and the evaluation of the questionnaire 

data with appropriate methodologies and specifically the LIME framework (Ribeiro et al., 

2016), a final selection of input variables was conducted. Table 1 lists all the questions used as 

input in models of the present study, which are a subset of the greater ESRA questionnaire as 

presented in Meesmann et al. (2021). 
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Table 1. Considered variables from the ESRA2 questionnaire.  

Abbreviation Question Scale 

Self-declared behaviour in traffic 

V012_1b_14 Over the last 30 days, how often did you as a CAR 

DRIVER drive when you were so sleepy that you had 

trouble keeping your eyes open? 

At least once (2-5) – 

never (1) 

V012_1b_8 Over the last 30 days, how often did you as a CAR 

DRIVER drive without wearing your seatbelt? 

At least once (2-5) – 

never (1) 

V012_1b_13 Over the last 30 days, how often did you as a CAR 

DRIVER read a text message/email or check social 

media (e.g. Facebook, twitter, etc.) while driving? 

At least once (2-5) – 

never (1) 

V012_1b_2 Over the last 30 days, how often did you as a CAR 

DRIVER drive after drinking alcohol? 

At least once (2-5) – 

never (1) 

V012_1b_9 Over the last 30 days, how often did you as a CAR 

DRIVER transport children under 150cm without using 

child restraint systems (e.g. child safety seat, cushion)? 

At least once (2-5) – 

never (1) 

V012_1b_7 Over the last 30 days, how often did you as a CAR 

DRIVER drive faster than the speed limit on 

motorways/freeways? 

At least once (2-5) – 

never (1) 

V012_1b_4 Over the last 30 days, how often did you as a CAR 

DRIVER drive after taking medication that carries a 

warning that it may influence your driving ability? 

At least once (2-5) – 

never (1) 

V012_1b_1 Over the last 30 days, how often did you as a CAR 

DRIVER drive when you may have been over the legal 

limit for drinking and driving? 

At least once (2-5) – 

never (1) 

V012_1b_5 Over the last 30 days, how often did you as a CAR 

DRIVER drive faster than the speed limit inside built-

up areas? 

At least once (2-5) – 

never (1) 

V012_1a_3 Over the last 12 months, how often did you as a CAR 

DRIVER read a text message or email while driving? 

At least once (2-5) – 

never (1) 

Acceptability of traffic behaviour 

V014_1 How acceptable do you, personally, feel it is for a CAR 

DRIVER to drive when he/she may be over the legal 

limit of drinking and driving? 

Acceptable (4-5) – 

unacceptable/neutral 

(1-3) 

V014_9 How acceptable do you, personally, feel it is for a CAR 

DRIVER to talk on a hand-held mobile phone while 

driving? 

Acceptable (4-5) – 

unacceptable/neutral 

(1-3) 

V014_12 How acceptable do you, personally, feel it is for a CAR 

DRIVER to drive when they’re so sleepy that they have 

trouble keeping their eyes open? 

Acceptable (4-5) – 

unacceptable/neutral 

(1-3) 

Support for policy measures 

V018_5 Do you support or oppose legal obligation to install 

Dynamic Speed Warning signs (traffic control devices 

that are programmed to provide a message to drivers 

exceeding a certain speed threshold)? 

Support (4-5) – 

oppose/neutral (1-3) 
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Table 1 (cont.). Considered variables from the ESRA2 questionnaire. 

Abbreviation Question Scale 

Subjective safety and risk perception 

V017_2 How often do you think each of the following factors is 

the cause of a road crash involving a car? Drive after 

taking drugs (other than medication) 

Often/frequently (4-6) – 

not that often/not 

frequently (1-3) 

Figure 1 shows the distribution of the answers to each question of Table 1, after the elimination 

of incomplete or unknown entries. 

 

Figure 1. Distribution of answers to ESRA2 questions. 

3.2 Data collection & sample characteristics 

The ESRA2 online survey provides a dataset from many countries around the world, for all 

road users. The total sample size was 45,000 road users across 48 countries (men: 49.6%, 

women: 50.1%, other: 0.3%) (Meesmann et al., 2021).1 From this dataset, 30,683 participants 

were regular car drivers, defined as a person who uses their car a few days a month or more. 

The initial aim of the survey was to have a representative sample of the adult population of at 

least 1,000 respondents in each country. However, the minimum sample of 1,000 respondents 

 
1 Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, 

Netherlands, Poland, Portugal, Serbia, Slovenia, Spain, Sweden, Switzerland, United Kingdom, Canada, USA, 

Australia, India, Israel, Japan, Republic of Korea, Egypt, Kenya, Morocco, Nigeria, South Africa, Bulgaria, 

Iceland, Luxembourg, Norway, Colombia, Lebanon, Malaysia, Thailand, Vietnam, Benin, Cameroon, Ghana, 

Ivory Coast, Tunisia, Uganda, Zambia. 

V012_1a_3

V012_1b_1

V012_1b_13

V012_1b_14

V012_1b_2

V012_1b_5

0% 25% 50% 75% 100%
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1 − Never
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5 − (Almost) always

Self−declared behavior in traffic

V014_1

V014_12

V014_9

0% 25% 50% 75% 100%

Answer

1 − Unacceptable   

2

3

4

5 − Acceptable

Acceptability of traffic behavior

V018_5
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1 − Oppose         

2
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4
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Support for policy measures

V017_2
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Precentage

Answer

1 − Not that often 

2

3

4

5

6 − Frequently

Subjective safety and risk perception
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could not be met in all countries, due to the size of the available online panels in certain 

countries (Ziakopoulos et al., 2021a). Table 2 summarizes the sample size, gender, and age 

group distribution by regions in the ESRA2 study (Meesmann et al., 2021). 

Table 2. Sample size, gender, and age group distribution by region. 

Region Sample 

size 

Gender Age group 

Male Female Other 18-

24y 

25-

34y 

35-

44y 

45-

54y 

55-

64y 

65y+ 

Europe 25,987 48% 52% 0% 10% 16% 17% 18% 16% 23% 

Asia/Oceania 8,590 50% 49% 1% 26% 31% 19% 12% 6% 6% 

America 3,009 48% 51% 0% 12% 17% 16% 17% 16% 20% 

Africa 7,528 49% 51% 0% 26% 28% 19% 13% 7% 6% 

As the goal of the survey was to have a representative sample of the population, hard quotas 

were implemented for gender and age distribution per country, along with other quotas 

described in previous research (Meesmann et al., 2021; Ziakopoulos et al., 2021b). In the 

present study, data from Iceland had to be discarded due to methodological differences, 

translation difficulties and other barriers which led to an overwhelming number of missing 

entries, therefore 47 countries remained in total.  

4 Statistical Background 

As per the aim of the present study, statistical methodologies are employed to investigate how 

various self-declared beliefs, perceptions and attitudes can influence road user choices on 

whether to drive under the influence of fatigue, as self-reported by car drivers. Within the 

ESRA2 questionnaire, this variable is reported in a binary format (0 for not even once driving 

under the influence of fatigue during the last 30 days, 1 in the opposite case). Both a traditional 

statistical method and a deep learning method are considered, in order to tackle the issue of 

fatigued driving with a linear modelling and a non-linear modelling approach. Initially, a 

common binary logistic regression model is implemented to provide a basis for causal 

interpretation as well as a benchmark for measuring the performance of a deep neural network 

(DNN). 

4.1 Binary Logistic Regression 

Binary logistic regression models are well established statistical functional-based methods, 

widely applied in order to model binary outcomes. A brief outline is provided here; the reader 

can refer to Washington et al. (2020) for more in-depth explanations. The model begins by 

considering a linear predictor, as expressed by Equation (1):  

𝑦𝑖 =  𝑏0 + ∑ 𝑏𝑘 ∗ 𝑥𝑖𝑘

𝑛

𝑘=1

+ 𝜀𝑖 

(1) 

Where: 

𝑦𝑖 is the dependent (or response) variable of observation 𝑖 
𝑥𝑖𝑘 are the independent (or explanatory) 𝑛 variables of observation 𝑖 
𝑏𝑘 is the coefficient of a particular 𝑥𝑘  

𝑏0 is the constant term 

𝜀𝑖 is the error term of the model at observation 𝑖. 
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If a utility function is considered by expressing the predictor without considering the error term, 

as given by Equation (2): 

𝑈 =  𝑏0 + ∑ 𝑏𝑘 ∗ 𝑥𝑖𝑘

𝑛

𝑘=1

 

(2) 

Then the probability P that the dependent variable belongs in a specific class is given by 

Equation (3): 

𝑃 =  
𝑒𝑈

𝑒𝑈 + 1
 

(3) 

The reader is referred to several available sources which describe the underlying statistical 

processes of (binary) logistic regression in great detail (e.g. Harrell, 2015; Tranmer & Elliot, 

2008). Model selection process between models including different independent variable 

subsets is conducted by the examination of the corrected Akaike Information Criterion (AICc). 

The sign of the coefficients ought to be examined to ensure that results are consistent with the 

real mechanisms that are modelled and thus reasonable. 

Since residuals cannot be used as a test for goodness of fit of the model, the Hosmer and 

Lemeshow Test was used. The test calculates whether observed event rates match the expected 

ones in subgroups of the model population (Hosmer & Lemeshow, 1989). The output of the test 

is a chi-squared value and a p-value. A p-value higher than 0.05 indicates a good fit, and an 

acceptable model. 

In the present research, binary logistic regression was selected as a baseline model for 

benchmarking purposes in order to measure DNN performance. Random-effects models were 

also considered during the model training phase and investigations were made following Bates 

et al. (2011). However, results indicated that random intercept effects were not statistically 

significant, and the implementation of random slopes is inappropriate for questionnaire replies. 

Therefore, the methodological details of random effects models are omitted here as these 

models were discarded. 

4.2 Deep Neural Network 

The second method used to predict whether a driver has recently driven while fatigued is 

through a deep artificial neural network (DNN/ANN). The DNN family of algorithms was 

partly inspired by the biological neural networks, which are able to process information in 

parallel. Each artificial neuron has a number of inputs that produce a single output, which is 

then sent to other neurons. A connection between neurons is associated with a weight, which 

serves to express different relative importance. DNN methods have been widely used in 

quantitative research and encompass a large variety of techniques; indicatively, see 

Samarasinghe (2006). 

The DNN consists of a number of different layers. The first one is the input layer of units (or 

neurons, nodes), afterwards there is a number of hidden layers of units (usually two or three), 

and the final (output) layer has the output neurons. Each layer has an activation function, 

computes outputs by combining the weights with the inputs (Dawson & Wilby, 1998). The 

activation function not only introduces nonlinearity into the DNN, but also bounds the value of 

the neuron so that the DNN in not paralyzed by divergent neurons (Wang, 2003). The activation 

functions used in this paper were the Rectified Linear Unit (ReLU) and the Sigmoid. ReLU has 

been found to allow for rapidly converging DNNs; it is a pseudo-linear function that does not 
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become trapped in local minima and allows for unhindered backpropagation (Hara et al., 2015). 

The Sigmoid function was used in the output layer since the output of the function returns a 

result between 0 and 1, which is what is needed in a binary classification model. DNNs can be 

applied to supervised and unsupervised tasks and have been reported to overcome the necessity 

of feature engineering (Schmidhuber, 2015). Figure 2 is a simplified version of the DNN used 

in this research, where there are two hidden layers, and the output layer has two neurons, since 

the outcome variable is binary.  

 

Figure 2. Theoretical DNN structure. 

The training of the DNN (backward propagation) is performed by calculating the weights using 

the training set. This is conducted in many iterations, depending on the size of the dataset and 

the number of variables. Using the complete, trained DNN, data from the test set are used as 

input and predictions are obtained from the output layer (forward propagation).  

Some of the most widely used goodness-of-fit indicators for the DNN model are the accuracy, 

the loss, and the mean square error (MSE). The term accuracy measures the fraction of 

observations that are correctly classified, while loss measures the difference between predicted 

and actual values. MSE is the average of the square of the distances between the predicted and 

actual values (Arnold, 2017). 

Two additional important parameters of the model are the epoch number (i.e. the number of 

times that the learning algorithm will process the dataset) and the batch size (i.e. the number of 

samples to process before updating the internal model parameters) (Gulli & Pal, 2017). The 

number of nodes in each layer along with the epoch number and batch size are called 

hyperparameters (in other words, hyperparameters are numeric quantities that govern the DNN 

structure). To determine the optimal values for the hyperparameters, hyperparameter tuning 

was conducted. This process trains a number of DNN models with different specification 

combinations and selects the optimal combination for a given dataset based on better 

classification performance, higher accuracy and lower MSE.  

4.3 Comparative model performance evaluation 

Comparative metrics for model performance evaluation were established, since the two 

modelling processes are too dissimilar to allow for direct comparison. The commonly used 

ROC (receiver operating characteristic) curves were adopted, which help to visualize the 
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performance of the model and provide quantitative assessment by measuring the area under the 

curve (AUC); a ROC-AUC value closer to 1 indicating better distinction between positive and 

negative classes (Washington et al., 2020). Confusion matrixes were also created in order to 

inspect the proportions of true positives (TP) and true negatives (TN) as compared to the total 

sample, in other words, the percentage of correct classification. 

5 Model Development and Results 

As per the aforementioned, the outcome variable for the models referred to their driving under 

the influence of fatigue. Specifically: “Over the last 30 days, how often did you as a CAR 

DRIVER drive when you were so sleepy that you had trouble keeping your eyes open?” 

(V012_1b_14 abbreviation in the ESRA2 questionnaire).  

The rest of the variables listed in Table 1 were used as input for both models. Since the 

dependent variable question addresses only car drivers, all other road users were removed from 

the dataset. After filtering and data cleaning for the elimination of incomplete or unknown 

entries, the resulting dataset consisted of observations from 31,606 respondent drivers, 

removing 13,437 observations from the dataset. The dependent variable responses were slightly 

imbalanced (24,416 respondents replied never (coded as 0) and 7,190 respondents replied at 

least once or more times (coded as 1)), resulting to an imbalance ratio of 30% between classes.  

As per standard good practice, models were trained in a subset of the entire usable dataset, 

while their predictions were tested in data which was completely new for the model. The chosen 

ratio was 70% for the train subset and 30% for the test subset, and the two sets were kept 

identical for the binary logistic model and the DNN. All analyses are conducted using R-studio 

(R Core Team, 2019) and a number of packages. 

5.1 Binary logistic regression results 

Binary logistic regression models were fitted using backward elimination. It should be noted 

that upsampling and downsampling techniques were explored but they did not produce any 

noticeable gains in the final models and were ultimately not adopted. When examining a model, 

all variables with a p-value of 0.05 are considered statistically significant (95% significance 

level). The final model results appear on Table 3. 

Table 3. Binary logistic regression model for fatigued driving. 

Independent 

variable 

Coefficients 

Beta Estimate Std. Error z value p-value 

Intercept -4.479 0.114 -39.460 < 0.001 

V014_12 0.891 0.030 29.259 < 0.001 

V012_1b_8     0.150 0.021 7.159 < 0.001 

V014_1       -0.230 0.034 -8.726 < 0.001 

V012_1b_13 0.324 0.031 10.619 < 0.001 

V012_1b_2 0.189 0.033 5.811 < 0.001 

V012_1b_7     0.169 0.019 9.114 < 0.001 

V012_1b_4     0.489 0.028 17.431 < 0.001 

V017_2       -0.053 0.010 -5.301 < 0.001 

V012_1b_1     0.256 0.038 6.680 < 0.001 
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Table 3 (cont.) Binary logistic regression model for fatigued driving. 

Independent 

variable 

Coefficients 

Beta Estimate Std. Error z value p-value 

V012_1b_5   0.187 0.022 8.339 < 0.001 

V012_1a_3     0.107 0.028 3.864 < 0.001 

V018_5       -0.039 0.016 -2.371 0.018 

V014_9       -0.058 0.024 -2.467 0.014 

The ROC curve produced by the binary logistic regression model had an AUC of 0.793 and is 

shown in Figure 3. 

 

Figure 3. Binary logistic regression ROC curve [AUC 0.793]. 

Table 4 shows the confusion matrix for the test data using this model, with a classification 

probability threshold of 0.30 (in other words, if an observation had a probability ≥0.30 of being 

1, then it would be classified as 1). The correct classifications (TP+TN), lying on the diagonal, 

amount to 79.0%. 

Table 4. Binary logistic confusion matrix. 

 Actual value 

Predicted value 0 1 

0 67.0 % 10.8 % 

1 10.3 % 12.0 % 

The binary logistic regression model can be insightful when it comes to showing how answers 

impact the prediction of the model. In Table 3 the negative signs of the coefficients indicate 

that the specific variable contributes to the driver being less likely to have recently driven while 

fatigued. The opposite happens with positive coefficients. 
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The first category of questions is the “Self-declared behavior in traffic”, which addresses self-

reported behavior towards topics related to driving under the influence of drugs, fatigue, or 

alcohol, as well as speeding, safety, and texting while driving. All of the variables in this 

category are positively correlated with recent fatigued driving. In other words, the more often 

drivers have reported such behavior, the more likely it is that they have recently driven while 

fatigued. 

The second category of questions is the “Acceptability of traffic behavior”, which has questions 

related to the acceptability of drivers towards impaired driving, speeding, and texting. Variables 

in this category have both positive and negative coefficients. The variable with the highest 

positive coefficient is V014_12: “How acceptable do you, personally, feel it is for a CAR 

DRIVER to drive when they’re so sleepy that they have trouble keeping their eyes open?”. It is 

not surprising for this question to have the highest positive coefficient since it is a variable 

denoting a close a priori qualitative relation with outcome variable. Results suggest that the 

higher personal acceptability of driving while fatigued leads to more likely engagement in such 

behavior. 

Variable V014_9 (i.e. “How acceptable do you, personally, feel it is for a CAR DRIVER to talk 

on a hand-held mobile phone while driving?”) and variable V014_1 (i.e. “How acceptable do 

you, personally, feel it is for a CAR DRIVER to drive when he/she may be over the legal limit 

of drinking and driving?”) both have negative coefficients. In other words, this finding denotes 

that mobile use – and the related distraction it causes – or alcoholic inebriation are less likely 

to lead to driving while fatigued. These outcomes are likely interpreted by overcompensating 

effects on the part of the drivers. Despite potentially committing violations when driving while 

using mobile phone or while drunk, drivers realize that they are driving with compromised 

driving ability. As a result, they avoid engaging in such behavior while fatigued to avoid further 

deterioration of driving ability. 

The third category of questions is the “Support for policy measures”, which is related to 

questions regarding the support of measures for safety and against drunk driving, and speeding. 

The higher the numeric number for the answer the higher the support of the driver for the 

specific measure. The respective question, V018_5, (i.e. “Do you support or oppose legal 

obligation to install Dynamic Speed Warning signs (traffic control devices that are programmed 

to provide a message to drivers exceeding a certain speed threshold)?”) is negatively correlated 

with recent fatigued driving. This finding is expected since drivers who support these measures 

are more likely to be more responsible when it comes to driving overall, and, as such, avoid 

driving while fatigued. 

The last category of questions is the “Subjective safety and risk perception”, where drivers were 

asked how often they believe certain factors are the cause of a road crash involving a car. The 

higher the numeric answer, the more frequent drivers believe these factors are causes of a road 

crash. The respective question, V017_2, (i.e. “How often do you think each of the following 

factors is the cause of a road crash involving a car? Drive after taking drugs (other than 

medication)”) is negatively correlated with recent fatigued driving, once again hinting at 

responsible driver perspectives reflecting to more responsible driver behavior. 

When examining the model overall, and despite an adequate classification performance, the 

Hosmer & Lemeshow Test was statistically significant: χ2
[df=8] = 125.58, p < 0.001. This 

outcome may indicate a subpar model fit for some of the strata of the sample, and provides 

further incentive to examine non-linear modelling such as the DNN. 

As per the aforementioned, random-effects models were also considered, trained following 

Bates et al. (2011). A configuration of random intercepts for each respondent was considered. 

However, when conducting the ANOVA test (log-likelihood test) between the fixed-effects and 
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the random intercepts binary logistic models, the outcome was not statistically significant, 

denoting that the inclusion of random effects on an individual level is not justified. The baseline 

fixed-effects model is thus retained. 

5.2 Deep Neural Network results 

The DNN utilized the exact same dataset and variables as binary logistic regression, including 

the random partition between training and test dataset. As described, the DNN created in this 

study comprised four layers in total. The input layer featured 124 neurons, the two hidden layers 

featured 64 and 32 neurons respectively, and the output layer featured 2 neurons.  

After hyperparameter tuning, the combination with the highest accuracy and the smallest loss 

was obtained. Thus, the epoch number of the model was 7, since for higher values overfitting 

was observed, and the batch size was 32. It should be noted that due to the nature of DNNs 

there might be slight fluctuations between two executions, even if the model was trained with 

the same dataset, due to randomizations in the process. It should be emphasized, however, that 

the executions did not have a big difference between them. Figure 4 shows the ROC curve 

produces by the DNN model, which had an AUC of 0.801. The run had an accuracy of 0.815, 

a loss of 0.423, and MSE of 0.134. 

 

Figure 4. DNN ROC curve [AUC 0.801]. 

The DNN outperformed the binary logistic regression in terms of ROC-AUC, and provided 

comparable results overall. The correct classifications (TP+TN), lying on the diagonal, amount 

to 80.1%, as shown on Table 5. 

Table 5. DNN confusion matrix. 

 Actual values 

Predicted values 0 1 

0 67.6% 10.4% 

1 9.5% 12.5% 
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The examination of the influence of each independent variable in the DNN output is also 

fruitful. The test subset is again considered. For each independent variable, the test subset is 

separated in two subsets based on the values of the considered variable (since they are all in a 

binary format). The aggregate estimate of the DNN and the respective accuracy of predictions 

for each subject is then calculated. Results are shown on Table 6. 

Table 6. Influence of each variable on DNN predictions. 

Independent 

variable Average prediction Accuracy 

Average 

prediction Accuracy 

Prediction 

difference 

Never (1) At least once (2-5) 

V012_1b_8 0.092 69.30% 0.165 73.96% 0.073 

V012_1b_13 0.090 67.18% 0.154 71.60% 0.064 

V012_1b_2 0.120 67.59% 0.200 74.19% 0.080 

V012_1b_9 0.113 69.19% 0.179 73.60% 0.066 

V012_1b_7 0.083 70.66% 0.142 74.67% 0.059 

V012_1b_4 0.107 67.77% 0.206 67.59% 0.099 

V012_1b_1 0.108 72.31% 0.217 82.22% 0.109 

V012_1b_5 0.091 73.30% 0.144 73.79% 0.053 

V012_1a_3 0.089 75.94% 0.145 72.56% 0.056 

 
Unacceptable/Neutral (1-3) Acceptable (4-5)  

V014_1 0.139 74.63% 0.433 82.50% 0.294 

V014_9 0.135 74.39% 0.268 72.80% 0.133 

V014_12 0.145 74.57% 0.274 69.23% 0.129 

 
Oppose/Neutral (1-3) Support (4-5)  

V018_5 0.161 75.14% 0.124 75.46% -0.037 

 
Not that often/Not frequently (1-3) Often/Frequently (4-6)   

V017_2 0.152 75.50% 0.128 76.26% -0.024 

Table 5 shows the confusion matrix for the test data for the DNN. The classification probability 

threshold for the DNN was set to 0.35 after several trials as it yielded the best overall results. 

It can be observed that, by examination of the respective subsets, most variables affect 

aggregate predictions in the same manner as in the binary logistic model. In other words, 

changes in the binary categories of most variables (moving from lower to higher scores) appear 

to increase average predictions if that variable had a positive binary logistic coefficient 

(e.g. V014_12) or to decrease average predictions if that variable had a negative binary logistic 

coefficient (e.g. V018_5). There are two exceptions: V014_1 and V014_9, which switch to a 

positive contribution in the DNN. The explanation for this discrepancy is, most likely, that the 

effect of these two variables is not sufficiently isolated from the other variables. This may be 

exacerbated by the fact that, as shown in the distributions of Figure 1, there is a considerable 

imbalance of the negative against positive cases for these variables, and thus their contributions 

are less straightforward to interpret. 
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6 Discussion 

From the results of the ROC curve and the confusion matrix the binary logistic regression model 

seems to perform at a satisfactory level when it comes to predicting whether drivers recently 

drove while fatigued. However, the results from the Hosmer & Lemeshow test showed that the 

model did not achieve an adequate fit on the data, and random-effects models were not 

statistically significant from the fixed-effects model. For that reason, a more advanced method 

of modelling was used, the DNN. The DNN managed to outperform the binary logistic 

regression, yielding a small gain in ROC-AUC and correct classifications, probably due to non-

linearity in the model. 

Considering the two utilized models, it can be concluded that driving behaviour can be 

predicted from questionnaire data on overall driver opinions and perceptions on that issue. 

Specifically, using the answers of the ESRA dataset, fatigued driver behaviour, in terms of 

driving when a driver was so sleepy that they had trouble keeping their eyes open, was classified 

in a binary format. By covering a wide range of topics, from support to legal measures to self-

declared behaviour, it was possible to detect driver behaviours towards fatigued driving to an 

adequate degree. This would hint that the present variables can provide a basis for further 

expansion for the investigation of the extend of fatigue, which is an elusive trait to measure in 

road users.  

Arguably, comparison of the present results with existing literature is not a straightforward 

process, as not many studies have been conducted for fatigued driving prediction based on self-

reported driver perspectives from an aggregate multi-country driver sample. Nonetheless, 

certain parallels can be drawn from previous research results for specific variables. Higher 

acceptability of traffic driving under the influence of fatigue was positively correlated with self-

declared fatigued driving. This finding is in line with the results reported by Watling (2014) and 

those of Jackson et al. (2011) regarding perceived social norms. In turn, lower acceptability can 

be reasonably linked with higher perception of risk, therefore it can be considered that this result 

is also in line with the findings of Watling et al. (2014), who reported that higher risk perception 

was negatively correlated with self-reports of continuing to drive while drowsy. Similarly, links 

have been made by Radun et al. (2015), especially towards explaining the less frequent 

engagement of women in fatigued driving, as they are reported to have better perceptions of 

driving behaviours with increased risk. Nonetheless, women had been reported as having 

greater relative risk of sleepiness in earlier research (Wilson et al., 2006). Finally, increased 

support for policy measures was associated with less frequent fatigued driving in this study. 

This can be considered an extension of the results reported by Beck et al. (2018), where 

participants supported messages of the graphic consequences of drowsy driving as they 

believed it reduced such instances based on their own behaviours. 

Naturally, a number of limitations exist in the current approach. Most variables considered were 

not directly related to fatigued driving, as ESRA is a more general, high-level survey. A critical 

issue is that the analysed data are self-reported questionnaire data revealing stated behaviour as 

opposed to observed behaviour. It is well known that this kind of data are often less accurate 

and include inherent biases (Backer-Grøndahl & Sagberg, 2011). The bias may be from a 

misunderstanding of the question to desirability or recall bias (Ziakopoulos et al., 2021a). 

However, because most of the answers are drawn from a time period of a month recall error 

can reasonably be assumed to be limited. Another source that might have caused slight 

inaccuracies was the translation of the survey to 61 languages. An additional point to consider 

is that the ESRA survey includes general response tendencies and biases, as it is an international 

respondent survey, which may affect accuracy of conclusions (Torfs et al., 2016). Lastly, 

numerous observations with missing values had to be removed, amounting to a loss of 13,437 



17 

observations, comprising almost 30% of the original raw dataset. This is crucial for machine 

learning tasks, where more observations lead to a larger training set, which in turn typically 

produces more accurate models. 

7 Conclusions 

Unlike other driving impairments, such as drugs or alcohol, driver fatigue is very hard to 

measure. Evidence suggests that driving while fatigued may be as dangerous as driving while 

inebriated. There remains little awareness on the issue, however, or attempts to quantify and 

measure it. The present study aimed to investigate the extent to which fatigued driving 

behaviour can be predicted based on overall driver opinions and perceptions on that issue. To 

that end, data from the third iteration of the ESRA2 study are utilized, encompassing a broad 

sample of more than 31,606 respondent drivers from 47 countries. The input questions are 

related with self-declared beliefs, perception, and attitudes towards driving, all of which might 

affect a driver’s choice of whether to drive under the influence of fatigue.  

A binary logistic regression model and a Deep Neural Network (DNN) were trained on identical 

data in order to classify and predict driver behaviour as driving while fatigued or not. The DNN 

slightly outperformed the binary logistic model, yielding a small gain in ROC-AUC and correct 

classifications. Judging from the binary model coefficients, drivers reporting driving under the 

influence of drugs, fatigue, or alcohol, as well as speeding, safety, and texting while driving 

were more likely to have recently driven while fatigued. Acceptability of fatigued driving was 

also found to be positively correlated with actual fatigued driving behaviour. In contrast, 

acceptability of other hazardous behaviours, namely mobile phone use and drunk driving, was 

negatively correlated with fatigued driving behaviour. More responsible driver perspectives, in 

the form of support for road safety policy measures or the perspective that drugs is a crash 

causation factor were found to have a negative influence on driving while fatigued.  

While imperfect, the present model outcomes hint at new capabilities for fatigue detection. The 

present results can be expanded by creating international or internationally comparable national 

surveys that would be purpose-made to investigate the extent of fatigued driving in road 

networks. Extrapolations of numbers could formulate the basis for new policies or regulations 

to mitigate fatigued driving, road enforcement and effective awareness raising of all road users, 

while emphasis could be placed on the needs of fatigued-prone groups, such as long-haul 

truckers or other professional drivers. 
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